-
한-영 인공지능 협력 강화, KAIST-앨런 튜링 연구소 협력 협정 체결
우리 대학이 세계적인 국책 인공지능 연구기관인 영국의 앨런 튜링 연구소(Alan Turing Institute)와 이달 22일 '인공지능 및 데이터 과학 연구 협력 강화'를 위한 협력 협정을 체결했다.
한국과 영국 정부가 공동 주최한 'AI 서울 정상회의 2024'에 맞춰 체결된 이번 협력 협정을 바탕으로 향후 두 기관은 인공지능 및 데이터 과학 분야의 공동연구를 추진한다. 우리 대학김재철AI대학원(원장 정송)과 앨런 튜링 연구소 간의 인턴십·단기 파견 등의 인력교류와 파트너십 프로젝트를 통한 지식 교환 등 다양한 분야에서 학술 협력도 진행할 예정이다.
미셸 도넬런(Michelle Donelan) 영국 과학혁신기술부 장관은 "앨런 튜링 연구소와 KAIST 간의 합의 발표는 영국이 전 세계 파트너와의 협력적 접근 방식을 통해 혁신을 촉진하여 신기술이 제공하는 엄청난 잠재력을 완전히 실현할 수 있도록 하겠다는 의지를 더욱 입증한다"라고 밝혔다.
앨런 튜링 연구소의 과학 및 혁신(국방 및 국가 안보) 책임자인 팀 왓슨(Tim Watson) 교수는 "인공지능과 데이터 과학은 글로벌 과제와 글로벌 기회를 모두 제시하고 있으며, 한국에서 가장 권위 있는 대학인 KAIST와 중요한 파트너로 협력을 강화하게 되어 기쁘다"라고 전했다. 이어, "이는 양국이 이러한 강력한 기술을 사용하여 사회가 직면한 가장 큰 문제를 해결하는 데 도움이 될 것이다"라고 덧붙였다.정송 KAIST 김재철AI대학원 원장은 "두 기관 간의 긴밀한 협력을 통해 인공지능의 책임 있는 개발과 사용을 장려하고 인공지능이 모두를 위해 공평한 혜택을 보장할 수 있는 단계까지 발전하도록 연구와 노력을 이어가겠다"라고 전했다.
2024.05.30
조회수 2806
-
한-영, 합성생물학 글로벌 협력 본격화
우리 대학이 글로벌 연구 협력을 통해 합성생물학(Engineering Biology) 분야 인재 양성, 합성생물학 및 바이오파운드리 기술 확보에 나선다.
우리 대학은 현지 시간으로 22일 오후 영국 임페리얼 칼리지 런던 화이트시티 캠퍼스 I-HUB(Imperial College London, Translation & Innovation Hub)에서 양국 간 공동연구센터 구축 및 합성생물학 인재 양성, 파견·초빙 등 인력교류, 공동연구를 통한 핵심기술 확보, 첨단바이오 신산업 육성 등을 위한 협력 협정을 체결했다.
윤석열 대통령의 영국 국빈방문을 계기로 체결된 이번 협력 협정에는 우리 대학과 함께 한국생명공학연구원(원장 김장성, KRIBB), 영국 임페리얼 칼리지 런던(Imperial College London), 영국 국립 합성생물학센터(SynbiCITE)가 참여한다.
우리 대학은 올해 공학생물학대학원(원장 조병관)을 설립하고 바이오+인공지능+공학이 융합된 합성생물학 분야의 고급인재 양성을 시작했다. 한국생명공학연구원의 협력을 바탕으로 공학생물학 교육과정을 공동으로 개발했으며, 이번 협력 협정을 토대로 활발한 인력교류를 진행해 양국 간 관련 공동연구를 활성화할 예정이다.합성생물학은 생명과학에 공학적 기술개념을 도입한 분야다. 인공적으로 생명체의 구성요소나 시스템을 설계·제작·합성하는 학문적 연구와 기술개발을 주로 다루며, 국가 필수 전략기술 및 디지털바이오의 핵심 분야로 대두되고 있다. 바이오 연구개발과 디지털·인공지능·로봇자동화 기술을 융합해 고속·대량·저비용화를 실현할 수 있으며, 기존 바이오 기술의 한계를 극복할 수 있는 대안으로 부상하고 있다. 환경·의약·화학·에너지 등 산업 전반에 활용할 수 있어 막대한 시장 창출이 전망되는 분야이다.영국은 세계 최초로 합성생물학 로드맵을 수립('12)하고 글로벌 연구 생태계 조정에 주도적 역할 해왔다. 우리 대학은 이번 협력 협정을 계기로 향후 임페리얼 칼리지 런던 산하의 런던 바이오파운드리(센터장 폴 프리먼)와 긴밀히 협력할 예정이다. 바이오파운드리는 합성생물학 연구의 필수 인프라로 국내에서는 현재 과기부 주도로 예비타당성조사가 진행되고 있으며, 영국의 바이오파운드리 인프라 지원의 경험을 바탕으로 양국 바이오파운드리 간 협력도 추진된다.
이날 행사에서는 협정 체결과 함께 이종호 과학기술정보통신부 장관, 휴 브래디(Hugh Brady) 임페리얼 칼리지 런던 총장, 이상엽 연구부총장, 이승구 한국생명공학연구원 합성생물학연구소장, 임페리얼 칼리지 런던의 리차드 키트니(Richard Kitney) 교수, 폴 프리먼(Paul Freemont) 교수 등이 참여한 한-영 합성생물학 석학 간담회도 개최됐다.
김장성 한국생명공학연구원장은 "이번 양국 간의 협력이 기술 협력을 넘어 대한민국 바이오 분야에 제조혁신을 이끌 수 있는 도화선이 되길 희망한다"라고 말하며, "이를 실현하기 위한 공공 파운드리 구축과 인재 양성에도 KAIST와 적극 협력해 나가겠다"라고 전했다. 이광형 KAIST 총장은 "인공지능 등 4차 산업혁명 기술이 본격화되면서 첨단바이오 기술 역시 빠르게 발전하는 시대에서 합성생물학은 우리의 미래를 책임질 핵심 전략 분야"라고 강조했다. 이 총장은 이어 "양국의 협력은 합성생물학 분야에서 세계적으로 우수한 기술을 확보하는 것과 동시에 최고급 인력을 양성하는 주춧돌이 될 것"이라고 말했다.
2023.11.23
조회수 3556
-
강이연 교수, 영국 하원이 발간한 인공지능과 창의기술 보고서 참여
우리 대학 산업디자인학과 강이연 교수가 영국 하원 의회 소속 문화, 미디어, 스포츠 위원회(Culture, Media and Sport Committee, 이하 DCMS 위원회)의 초청을 받아 참여한 「연결된 기술: 인공지능과 창의기술 보고서(Connected tech: AI and creative technology Report」가 지난달 30일 발행됐다. 강 교수는 국제적으로 활동하는 미디어 아티스트이자 연구자, 교육자로서 지난해 11월 DCMS 위원회의 공청회(Enquiry Evidence Session)에 참여했으며, 이 보고서는 당시의 논의를 토대로 작성됐다. 해당 공청회는 영국 정부 부처와 국회의원들이 관심 있는 분야의 전문가를 초청해 의견을 듣는 공식회의로 이 자리에서 나온 전문가들의 의견은 추후 정책 수립에 반영이 된다.
강이연 교수는 '연결된 기술: 현명한가 사악한가?(Connected tech: smart or sinister?)'라는 주제로 열린 세션에 참여했다. 인공지능 기술이 예술 창작자에게 미치는 영향, 메타버스 등의 새로운 플랫폼이 문화산업에 미치는 영향과 현장에서 발생하는 문제들, 나아가 이러한 기술 기반 예술 분야를 고등교육 환경에서 교육하면서 발생하는 이슈들에 대해 영국 의원들과 논의했다. 다양한 쟁점과 이에 대한 전문가들의 의견을 담은 이번 보고서는 예술가들이 발전하는 기술의 한계를 뛰어넘을 수 있도록 크리에이티브 산업(creative industry)에 대한 지원을 보장할 것을 정부에 촉구하는 내용을 담고 있다. 또한, 빅토리아 앤 앨버트 박물관(Victoria and Albert Museum)이 강 교수의 미디어 아트를 전시 및 소장 것을 사례로 들며 관련 기관과 산업계가 어떻게 혁신기술을 수용하며, 새로운 가치를 보여주는지를 소개했다.
▴원작자가 지닌 권리와 인공지능 저작물 사이에 발생하는 충돌지점과 경제적 이슈들 및 업계 전반의 우려를 강조 ▴인공지능 기술이 크리에이티브 산업에 주는 영향 ▴실제 현장에서 생기는 이슈들과 현재 정책들의 유효성 ▴생성형 인공지능(Generative AI)과 같은 새로운 기술이 만들어낸 창작물에 적용되는 현행 제도의 문제점 등을 논의하고 해당 정책의 조속한 개선을 정부에게 촉구하는 내용을 눈여겨볼 만한 보고서다.
이와 함께, 전자 및 통신 기술 선진국인 한국이 K-pop, 영화 등 문화산업에서도 기술적 강점을 발휘하며 빠르게 발전 중인 현황이 강조되어 있어 한국의 기술 및 엔터테인먼트 분야에 대한 영국의 관심도 잘 드러나 있다.
강이연 교수는 "이번 보고서는 과학기술뿐 아니라 문화강국으로 거듭나고 있는 한국이 앞으로 기술과 예술의 융·복합적 분야를 선도할 것으로 예측하고 있다"라며, "이를 포함해 기술과 예술의 융합 및 현 제도의 문제와 보완책 등에 관한 영국의 논의는 KAIST에도 많은 시사점을 남긴다"라고 전했다. 한편, 이번에 발간된 보고서는 영국 의회 홈페이지(☞바로가기 클릭)에서 확인할 수 있다.
2023.09.08
조회수 5052
-
RNA 바이러스 초고감도 검출 기술 개발
우리 대학 생명화학공학과 박현규 교수 연구팀이 핵산의 절단 및 중합 연쇄반응 시스템을 활용해 RNA 바이러스의 표적 RNA를 초고감도로 검출하는 새로운 등온 핵산 증폭(NESBA, Nicking and Extension chain reaction System-Based Amplification) 기술을 개발했다고 15일 밝혔다.
생명화학공학과 주용 박사과정, 김효용 박사가 공동 제1 저자로 참여한 이번 연구는 영국 왕립화학회가 발행하는 국제학술지 `나노스케일 (Nanoscale)'에 2021년도 24호 표지(Front cover) 논문으로 지난달 16일 선정됐다. (논문명: Ultrasensitive version of nucleic acid sequence-based amplification (NASBA) utilizing nicking and extension chain reaction system)
현재 전 세계적으로 팬데믹 (Pandemic)을 일으키고 있는 코로나19 바이러스와 같은 RNA 바이러스를 검출하기 위한 표준 진단 방법은 역전사 중합효소 연쇄반응(qRT-PCR)이다. 이러한 표준 분자진단 방법은 면역진단 방법과 비교해 진단의 정확도는 매우 우수하지만 정교한 온도 조절 장치가 필요하고 진단에 드는 시간이 길어 장비의 소형화에 제약이 있으며 전문 진단 설비가 갖추어진 대형 병원 또는 전문 임상검사실에서만 제한적으로 사용된다는 단점이 있다.
연구팀은 이러한 현행 기술의 한계를 극복하기 위해 핵산의 절단 및 중합 연쇄반응 시스템에 의해 구동되는 초고감도의 신개념 등온 핵산 증폭 기술을 개발했으며, 이를 통해 별도의 온도 변환 과정 없이 동일 온도에서 표적 바이러스의 RNA를 초고감도로(검출 한계: 1 아토 몰 (aM)) 매우 신속하게(20분 이내) 검출하는 데 성공했다.
연구팀은 기존 나스바(NASBA, Nucleic Acid Sequence-Based Amplification) 등온 증폭 기술에 절단효소 인식 염기서열이 수식된 프라이머를 도입함으로써, 절단효소 및 DNA 중합효소 활성을 기반으로 T7 프로모터를 포함하는 이중가닥 DNA를 지수함수적으로 증폭할 수 있었고, 최종적으로 표적 RNA를 기존의 NASBA 기술에 비해 100배 이상 향상된 민감도로 검출할 수 있었다.
연구팀은 이 기술을 통해서, 호흡기 세포 융합 바이러스(RSV)의 유전 RNA(genomic RNA)를 별도의 전처리 없이 매우 신속하고 고감도로 검출함으로써, 기술의 실용성을 증명함과 동시에 현장 검사(POCT) 기술로서의 높은 활용 가능성을 입증했다.
박현규 교수는 "이번 신개념 등온 핵산 증폭 기술은 현재 대유행하고 있는 코로나19 바이러스와 같은 RNA 바이러스들을 신속하게 조기 진단 할 수 있는 분자진단 시스템에 활용될 가능성이 매우 큰 기술ˮ이라고 이번 연구의 의의를 설명했으며, 현재 코로나19의 임상 샘플 테스트에서도 매우 좋은 결과를 얻었다고 언급했다.
한편 이번 연구는 한국연구재단의 글로벌 프런티어사업과 경남제약(주)의 연구비 지원으로 수행됐다.
2021.07.15
조회수 11884
-
이상엽 특훈교수, 영국 왕립학회 회원 한국인 최초로 선정
우리 대학 생명화학공학과 이상엽 특훈교수(연구부총장)가 영국 왕립학회(Royal Society)의 외국 회원으로 선임됐다고 7일 밝혔다. 이는 서울대학교 생명과학부 김빛내리 석좌교수와 함께 공동으로 한국인 최초 선임이다.
영국 왕립학회(자연과학 진흥을 위한 런던왕립학회)는 1660년 영국에서 설립된 세계 최고 권위의 학술단체로, 아이작 뉴턴, 찰스 다윈, 알베르트 아인슈타인 등 저명 과학자들이 회원으로 활동했고, 노벨상 수상자만 현재까지 280여 명을 배출했다.
영국 왕립학회는 매년 ‘자연 지식의 개선에 대한 심대한 기여’를 기준으로 엄격한 심사를 거쳐 전 세계에서 한 해에 영연방 소속 회원 최대 52명까지, 외국인 회원은 최대 10명까지 선발한다.
이상엽 특훈교수는 시스템 대사공학을 창시해 다수의 미생물 세포공장 개발을 위한 전략과 방법에 관한 원천기술들을 개발했다. 이를 이용해 가솔린, 디젤, 생분해성 플라스틱, 그리고 고분자의 원료가 되는 다양한 단량체들, 천연 활성물질 등 다수의 제품을 세계 최초 혹은 세계 최고의 효율로 생산하는 기술들을 개발했다.
최근에도 폴리에스터의 원료가 되는 숙신산, 글루타릭산의 고효율 생산 균주와 발효공정을 개발했고, 천연물 중 빨간색의 식용색소인 카르민산을 세계 최초로 생산한 바 있다.
또한 이상엽 특훈교수는 미국과학기술진흥협회(American Association for the Advancement of Science), 미국발명아카데미(National Academy of Inventors), 미국미생물학술원(American Academy of Microbiology)등 다수 학술원의 펠로우로 선임된 바 있으며, 미국공학한림원(National Academy of Engineering)과 미국국립과학원(National Academy of Sciences)의 외국 회원(International Member)으로 동시에 선임된 전 세계 13명 중의 한 명이다.
이번에 영국왕립학회 외국 회원으로 선임됨으로써 이상엽 특훈교수는 미국과 영연방 과학자가 아닌 사람으로 세계 3대 아카데미인 미국공학한림원, 미국국립과학원, 영국왕립학회에 동시에 외국 회원인 전 세계 유일한 과학자가 됐다.
※ 왕립학회 관련 사이트 : https://royalsociety.org/people/sang%20yup-lee-35046/
2021.05.07
조회수 26399
-
커피링 얼룩 없는 디스플레이용 퀀텀닷 균일 코팅 기술 개발
우리 대학 기계공학과 김형수 교수 연구팀이 커피링 얼룩 자국이 남지 않는 균일 코팅 기술을 개발했다고 3일 밝혔다. 이는 디스플레이용 양자점(퀀텀닷)을 균일하게 코팅해 유연 디스플레이 소자 등에 적용할 수 있는 기술이다.
커피 한 방울이 고체 표면 위에서 마르면 액적(물방울) 표면의 상대적 증발률 차로 인해서 커피링 얼룩 자국이 남게 된다. 이를 커피링 효과라고 한다.
액적의 증발은 잉크젯 프린팅과 같은 기술에서 기능성 유연 재료의 균일 코팅이라는 문제와 직결된다. 최근 잉크젯 프린팅 기술은 단순 패턴 인쇄를 넘어 차세대 에너지 및 디스플레이를 포함한 전기‧전자 소자의 융복합 생산시스템 기술에 활용되고 있다.
그동안 과학기술계에서는 액적의 커피링 패턴을 제어하고 균일 마름 자국을 얻기 위해서 계면활성제를 사용하거나 부분적인 표면장력 변화를 발생시켜 *마랑고니 효과를 이용한 여러 방법이 소개돼왔다.
☞ 마랑고니 효과(Marangoni effect): 서로 다른 액체 등이 경계면을 따라 표면장력의 크기가 일정하지 않을 때 발생하는 현상을 말한다. 흔히 알려진 ‘와인의 눈물’ 현상이 대표적인 예다.
특히, 김형수 교수는 박사후연구원(프린스턴 대학 소속) 때부터 커피링을 효과적으로 제어하는 방법에 관한 연구를 해왔고, 2016년에는 위스키가 특이하게 마르는 현상을 규명해 획기적으로 커피링을 없애는 연구를 해왔다. 하지만, 물방울의 접촉선 위치에서의 커피링 효과는 줄일 수 있으나 여전히 효과가 존재한다는 문제가 있다.
김 교수 연구팀의 편정수 석사과정은 액적이 증발하는 공간을 한시적으로 밀폐시켜 커피링을 완전히 소멸시키는 방법을 개발했다. 이 기술은 증발율이 다른 두 액체를 효과적으로 혼합하고, 먼저 증발하는 휘발성 액체의 몰 분자량이 공기보다 큼을 이용해 밀폐된 공간에 갇힌 휘발성 증기가 연속적으로 용질성 마랑고니 효과(Solutal Marangoni effects)를 일으켜 커피링을 완전히 사라지게 만드는 기술이다.
김형수 교수는 "증발 물질을 잘 이해하고 물질전달 메커니즘을 활용해 증발 시스템을 최적화하면, 디스플레이 원료 퀀텀닷과 태양광 패널 원료 페로브스카이트와 같은 기능성 소자들을 대량 생산이 가능한 잉크젯 프린팅 기술로 균일한 패터닝을 가능하게 할 수 있다ˮ라며, "현재 해당 기술을 특허 출원했고 유연 디스플레이 소자에 적용하기 위해 연구를 진행하고 있다ˮ라고 덧붙였다.
이번 연구 결과는 국제적 권위 학술단체 `영국왕립화학회(Royal Society of Chemistry)'의 저명학술지 `Soft Matter(연성물질)' 誌 가 특별 기획한 `신진과학자 특집호(2021 Soft Matter Emerging Investigator Special Issue)'에 초청되어 지난달 7일 字 표지논문으로 게재됐다.
(논문명: Uniform coating pattern of multi-component droplets in a confined geometry)
(DOI: https://doi.org/10.1039/D0SM01872D)
2021.05.03
조회수 28100
-
암 진단에 필요한 새로운 형광 증폭 기술 개발
우리 대학 신소재공학과 장재범 교수 연구팀이 암 진단에 필요한 새로운 형광 신호 증폭 기술을 개발했다고 17일 밝혔다. 연구 결과는 국제 학술지인 영국왕립화학회(Royal Society of Chemistry)의 `나노스케일(Nanoscale)'誌 11월 13일 字에 게재됐다. (논문명: FRACTAL: Signal amplification of immunofluorescence via cyclic staining of target molecules)
※ 저자 정보: 조예린(신소재공학과 학사과정 학생, 제1 저자), 서준영(신소재공학과 박사과정 학생, 제2 저자), 장재범 교수(교신저자) 등 총 8명
최근 3D 전체 조직 영상화(이미징)를 가능하게 하는 생체조직 *팽창 기술(ExM) 및 투명화 기술(CLARITY, 3DISCO, CUBIC)은 복잡한 세포 간 상호작용 및 역할을 밝혀내는 핵심적인 역할을 하고 있다. 하지만 큰 부피 내부의 세포 변화를 관찰하기 위해서는 약한 형광 신호를 증폭해 높은 이미지 처리량을 갖는 기술이 필요하다.
※ 팽창 현미경 (Expansion Microscopy): 조직을 팽창시켜 일반 현미경으로 초고해상도를 얻을 수 있는 기술
※ 조직 투명화 기술 (Tissue Clearing System): 빛의 산란을 최소화하고 투과도를 극대화하여 3D 전체 조직을 이미징하는 기술
지금까지 신호 증폭 기술은 다양한 화학 반응으로 개발돼왔는데, 이들 중 많은 기술은 단일 화학 반응을 이용하기 때문에 다중 표지 신호 증폭 영상화를 위해서는 단일 신호 증폭과 비활성화 과정을 채널별로 반복해야 하는 단점이 있고, 유전자(DNA) 기반의 신호 증폭 기법은 서로 다른 항체에 대한 유전 물질 분자 결합의 최적화 과정이 필요하므로 일반적인 생물 실험실에서 사용이 어렵다.
장재범 교수 연구팀은 이러한 문제점 개선을 위해 현재 상용화돼 있는 형광 분자가 표지된 항체를 사용해, 추가적인 최적화 과정이 필요 없는 신호 증폭 기술에 주목했다.
결과적으로 연구팀은 `프랙탈(FRACTAL, Fluorescence signal amplification via repetitive labeling of target molecules)'이라는 새로운 신호 증폭 기술을 개발했다. 프랙탈 기술은 항체 기반의 염색 방법으로, 신호 증폭 과정이 매우 간단하다는 특징이 있다. 이 기술은 신호 증폭을 위해 특수한 화학 물질을 필요로 하지 않으며, 형광 분자가 표지된 2차 항체의 반복적인 염색을 통해 형광 신호를 증폭시킨다.
이 기술은 한 종류의 1차 항체, 두 종류의 2차 항체, 총 세 종류의 항체를 이용하는 아주 간단한 기술이다. 신호 증폭 과정은 표적 단백질에 대한 1차 항체 및 첫 번째 2차 항체 염색으로 시작되며, 그다음으로 첫 번째 2차 항체에 결합하는 두 번째 2차 항체의 염색이 이뤄진다. 두 번째 2차 항체의 숙주(host)와 1차 항체의 숙주(host)는 같으며, 그다음 염색은 다시 두 번째 2차 항체에 결합하는 첫 번째 2차 항체의 염색으로 이어진다.
예를 들어 토끼의 1차 항체를 사용하고 당나귀의 항-토끼 2차 항체를 첫 번째 2차 항체로 사용했다면 토끼의 항-당나귀 2차 항체를 두 번째 2차 항체로 사용하게 된다. 그러면 두 번째 2차 항체에는 첫 번째 2차 항체가 결합하게 되고 그 반대의 경우로도 결합해 염색을 이어나가게 된다.
이 과정의 반복을 통해 연구팀은 기존 형광 신호를 9배 이상 증폭시켰으며, 이는 같은 밝기를 얻는 데 필요한 영상화 시간을 9배 이상 줄일 수 있다는 결과를 얻었다. 연구팀은 초고해상도 현미경(STORM) 분석을 통해 염색 횟수에 따라 항체가 균일한 결합 층을 형성하며 형광 신호를 증폭시키는 현상을 확인했다.
연구팀은 이 기술을 서로 다른 종으로부터 유래된 직교적인(orthogonal) 항체 쌍에 적용해, 동시 다중 표지 신호 증폭 영상화를 구현했으며, 팽창 현미경에도 적용해 팽창 후에도 높은 형광의 강도를 갖는 형광 신호 증폭 기술을 구현했다.
이 기술은 간단한 항체-항원 반응에 기반해 형광 신호를 증폭시키는 기술로, 영상을 통한 생체조직의 분석 및 치료기술 개발, 다지표 검사, 의료 및 신약 개발 분야에 이바지할 것으로 연구진은 기대하고 있다.
제1 저자인 조예린 학생은 "높은 이미지 처리량을 가진 이 기술은 디지털 병리 분야의 발전에 중추적인 영향을 미칠 것ˮ이며, "생체 내 다중지표에 대한 정보를 정밀하게 제공해 현대 의약 분야의 의약품 분석 및 치료 시스템에 직접적으로 응용될 수 있다ˮ라고 말했다.
장재범 교수도“이 기술은 환자 생체 검사 조직 내부에서 매우 중요하지만 낮은 수준으로 발현되는 바이오마커들을 정확하게 이미징 할 수 있게 해주기 때문에, 암 진단 및 면역 항암제 반응률 예측 등에 큰 도움이 될 것으로 기대된다.”라고 강조했다
한편 이번 연구는 과학기술정보통신부가 지원하는 뇌과학원천기술개발 과제와 KAIST 학부연구생프로그램(URP)의 지원을 받아 수행됐다.
2020.12.18
조회수 50103
-
원자 틈 이용해 이산화탄소의 연료 변환 성공
신소재공학과 강정구 교수 연구팀이 성균관대, UNIST, 부산대, 미국 버클리대학, 칼텍과의 공동 연구를 통해 구리 입자 내 원자의 틈을 제어하는 기술을 적용해 온실가스인 이산화탄소를 에틸렌 등의 고부가 연료로 변환할 수 있는 전기화학촉매 소재기술을 개발했다.
이는 이산화탄소로부터 에틸렌 생성비율을 최고 80%까지 높이는 기술로, 연구팀은 기존 나노입자기반 촉매의 한계를 뛰어넘기 위해 원자수준의 촉매제어 기술을 도입했다. 이번 연구결과는 기존 촉매소재 설계에서 제시되지 않은 ‘원자 틈’을 처음으로 촉매설계의 주요인자로 적용해 산업적 가치가 높은 에틸렌의 생산성을 획기적으로 높였다. 동시에 천연가스에서 손쉽게 얻을 수 있는 메탄의 생성을 실험적으로 완전히 억제했으며, 양자역학 계산 기술을 이용해 원자 틈의 촉매반응 활성 원리를 이론적으로 규명했다.
이번 연구 결과는 에너지 분야 국제 학술지 ‘어드밴스드 에너지 머티리얼즈 (Advanced Energy Materials)’ 3월 10일자에 표지논문으로 게재 됐다. (논문명: Atomic-Scale Spacing between Copper Facets for the Electrochemical Reduction of Carbon Dioxide)
전기화학적 촉매반응을 활용한 이산화탄소 변환 기술은 지구 온난화를 일으키는 이산화탄소를 저감하는 대표 기술 중의 하나로, 효율적인 이산화탄소 전환 촉매기술의 개발을 통해 대기 중의 이산화탄소 농도를 줄이면서 산업에 유용한 연료나 화합물을 생산하는 기술이다. 이산화탄소 전환을 위해 다양한 전이금속 기반의 전기화학 촉매가 개발되고 있으나, 에틸렌과 같은 탄화수소 계열의 연료를 생산할 수 있는 원소는 구리가 유일하다.
하지만 일반적으로 구리 촉매는 반응 속도 및 생성물의 선택성이 높지 않아 이산화탄소 저감의 실효성과 생성물의 경제성이 떨어졌다. 이를 해결하기 위해 구리촉매의 특성을 개선하려는 연구가 세계적으로 활발히 진행되고 있다.
연구팀은 산화된 구리의 환원반응을 전기화학적으로 미세하게 제어해 구리 결정면 사이에 1나노미터 미만의 좁은 틈을 생성했다. 이 원자 틈에서 이산화탄소 환원반응 중간생성물의 촉매표면 흡착에너지를 최적화해 촉매반응의 활성을 극대화했다. 동시에 탄소-탄소 결합을 유도해 에틸렌과 같은 고부가 화합물이 효율적으로 생산되는 것을 규명했다. 연구에서 제안한 신규 활성인자인 원자 틈 원리는 다양한 전기화학 촉매 연구 분야로 확장할 수 있다는 의의를 갖는다.
강정구 교수는 “구리 기반 촉매소재에 간단한 공정 처리기술을 도입해 온실가스인 이산화탄소를 전환함으로써 고부가 화합물인 에틸렌을 효율적으로 생산하는 소재기술이다”라며, “기후변화 및 온실가스 문제 대응을 위한 핵심 대안기술이 될 수 있을 것으로 전망한다”라고 말했다.
이번 연구는 강정구 교수, 성균관대학교 정형모 교수, UNIST 권영국 교수, 부산대 김광호 교수, 그리고 미국 버클리, 칼텍 연구팀과 공동연구를 통해서 이뤄졌으며, 과학기술정보통신부의 글로벌프론티어사업, 신진연구자지원사업 및 차세대탄소자원화사업단의 지원을 받아 수행됐다.
2020.03.16
조회수 19137
-
전성윤 교수, 8시간 안에 항생제 조합 성능 확인하는 기술 개발
〈 김승규 연구원, 전성윤 교수 〉
우리 대학 기계공학과 전성윤 교수 연구팀(바이오미세유체 연구실)이 미세유체 칩을 이용해 두 개의 항생제 간 시너지 효과를 8시간 만에 검사할 수 있는 기술을 개발했다.
이번 연구는 항생제의 시너지 효과 검사에 최소 24시간 소요돼 활용이 어려웠던 기존 기술을 크게 개선한 것으로, 향후 환자들에게 적절한 항생제 조합치료를 할 수 있는 기반 기술이 될 것으로 기대된다.
김승규 석박사통합과정이 1 저자로 참여하고 생명과학과 정현정 교수 연구팀과 공동으로 수행한 이번 연구는 영국 왕립화학회(Royal Society of Chemistry)에서 발행하는 ‘랩온어칩(Lab on a Chip)’ 3월 21일 자 뒤표지 논문으로 게재됐다. (논문명 : On-chip phenotypic investigation of combinatory antibiotic effects by generating orthogonal concentration gradients, 직교 농도구배 형성을 통한 칩 상 항생제 조합 효과 검사)
항생제에 매우 높은 저항성을 갖는 ‘슈퍼박테리아’의 등장은 세계적으로 병원 및 관련 기관에 큰 위협으로 떠오르고 있다. 지난 2014년에는 세계보건기구(WHO)가 병원균의 항생제에 대한 내성이 심각한 수준에 도달했다고 공식적으로 처음 보고하기도 했다.
이러한 항생제 저항성 병원균을 효과적으로 억제하기 위해 두 종류 이상의 항생제를 섞어 처리하는 ‘항생제 조합 치료’가 주목받고 있지만, 항생제의 종류와 적정한 농도 범위가 큰 영향을 미쳐 정확한 조합을 해야 할뿐더러 치료가 항상 효과적이지는 않다는 문제점이 있다.
따라서 미지의 항생제 저항성 병원균을 대상으로 체외 항생제 조합 검사를 통해 적합한 항생제 조합과 농도 범위를 찾는 것은 매우 중요한 과정이다. 하지만 기존 검사 방식은 항생제 희석 및 샘플 준비 과정이 불편하고 결과 도출까지 24시간 이상이 걸려 대부분 경험적 치료에 의존하고 있다.
연구팀은 문제 해결을 위해 필요한 샘플 양이 수십 마이크로리터에 불과한 미세유체 칩을 이용했다. 머리카락 굵기 수준의 좁은 미세채널에서 유체 흐름을 제어할 수 있는 시스템인 미세유체 칩을 통해 두 개의 항생제 간 농도조합 121개를 단 35분 만에 자동으로 형성했다.
연구팀은 박테리아 샘플을 아가로스 젤과 섞어 미세채널에 주입해 굳힌 뒤 이를 둘러싸는 미세채널들에 각 항생제가 포함된 시약과 항생제가 포함되지 않은 시약을 주입했다.
항생제가 첨가된 채널로부터 항생제가 없는 채널로 항생제 분자들의 확산이 이뤄지고 결국 두 항생제의 조합이 박테리아가 굳혀있는 아가로스 젤에 35분 만에 형성된다. 연구팀은 이후 6시간 동안 억제되는 박테리아의 성장을 현미경을 통해 관찰했다.
연구팀은 서로 다른 항균 원리를 갖는 다섯 종류의 항생제를 두 개씩 조합해 녹농균(Pseudomonas aeruginosa)을 대상으로 항생제 조합 효능 검사를 시행했다. 그 결과 항생제 짝에 따라 각기 다른 항균효과를 확인할 수 있었고 검사한 항생제 짝의 시너지 관계를 분류할 수 있었다.
연구팀의 미세유체 칩 기반의 검사 방식은 번거로운 희석과정과 긴 검사 시간으로 인해 불편했던 기존 검사 방식을 크게 개선했다.
이전에도 전 교수 연구팀은 ‘미세유체 칩 기반의 항생제 효능 신속검사 기술’을 개발해 지난 2월 5일 ‘바이오마이크로플루이딕스(Biomicrofluidics)’지에 피처 기사로 게재한 바 있다. 이번 논문은 그 후속 연구로 미세유체 칩이 차세대 약물 검사 플랫폼으로 활용될 가능성을 제시했다는 의의가 있다.
연구책임자인 전 교수는 “미세유체 칩의 약물 검사 플랫폼으로써의 발전 가능성은 무궁무진하다”라며 “개발한 미세유체 칩이 상용화돼 실제 현장에서 항생제 조합치료를 위해 활용되기를 기대한다”라고 말했다.
이번 연구는 EEWS 기후변화연구허브사업과 교육부 이공분야기초연구사업 및 BK21 플러스프로그램의 지원을 받아 수행됐다.
그림 설명
그림1. Lab on a Chip 표지 이미지
그림2. 본 연구의 미세유체 칩과 분석결과 예시
2019.04.05
조회수 20561
-
김수빈 학생, 영국왕립화학회 학술지 표지논문 게재
〈 김 규 한 연구교수, 김 수 빈 학생 〉
우리 대학 학부 4학년 김수빈 학생의 이중 에멀젼(Double Emulsion) 형성 관련 논문이 국제 학술지의 표지논문에 선정됐다.
우리 대학의 학부생 연구지원 프로그램인 URP(Undergraduate Research Participation)를 통한 연구 참여가 활발해지면서 학부생이 1저자로 참여한 논문이 국제 학술지에 등재되는 경우가 많아지고 있다. 김수빈 학생은 URP 프로그램을 통한 연구로 국제 학술지 게재를 넘어 표지논문에 선정되는 성과를 이뤘다.
김수빈 학생의 논문은 세계적으로 권위 있는 학술단체인 영국왕립화학회(Royal Society of Chemistry)가 발간하는 국제 학술지 ‘소프트 매터(Soft Matter)’2018년 2월 7호 표지논문에 게재됐다. (논문명: Controllable one-step double emulsion formation via phase inversion)
특히 김수빈 학생은 이번 표지 이미지를 자신의 상상과 관찰을 바탕으로 직접 디자인해 그 가치를 더 높였다.
김 군이 수행한 이번 연구는 이중 에멀젼(Double Emulsion)의 안정성 향상 관련 연구로 이중 에멀젼이란 에멀젼 방울 안에 또 다른 액체로 구성된 방울이 서로 섞이지 않고 캡슐화 된 상태로 구성된 형태를 뜻한다.
이중 에멀젼은 캡슐화를 통한 보유 능력이 탁월해 식품, 화장품, 약물 전달 등 다양하게 사용 가능하다. 그러나 이중 에멀젼을 대량 생산할 수 있는 기존 기술은 내부의 액체 방울을 만든 뒤 이를 캡슐화 하는 두 단계의 공정에서 액체 방울이 쉽게 파괴되고 개발 이후 이중 에멀젼의 안정성이 보장되지 않는 한계가 있다.
또한 이런 과정에서 이중 에멀젼의 크기와 내부 액체 방울의 비율을 조절하는 데 어려움을 겪고 있다.
김 군은 분자들의 화학 반응처럼 물방울들이 충돌해 일어나는 상 반전(Phase Inversion)의 과정에서 단서를 얻었다. 상 반전이 일어나는 과정에서 이중 에멀젼이 일시적으로 형성됨을 발견했고 이를 바탕으로 이중 에멀젼의 안정성을 높일 수 있는 기준을 제시했다.
이후 지속된 연구에서 폴리메틸 메타아크릴레이트(PMMA)와 소수성 실리카 입자가 이 조건을 만족하는 것을 찾아내 한 번의 공정으로 안정적인 이중 에멀젼을 만들 수 있음을 증명했다. 추가적으로 PMMA와 나노입자의 양을 조절해 이중 에멀젼 내부 물방울의 개수와 부피를 조절하는데 성공했다.
2014년 총장장학생(KPF : KAIST Presidential Fellowship)이자 대통령과학장학생으로 입학한 김 군은 화학과 생명화학공학을 배우고 연구하며 직접 관찰하기 어려운 현상을 머릿속으로 상상하며 이를 바탕으로 가설을 세우고 연구해왔다.
김 군이 일찍부터 연구에 몰두할 수 있었던 것은 학부생 연구지원(URP) 프로그램에 두 차례 참여했던 경험 덕분이다. 학부 2학년 때에는 물리적 힘을 이용해 식품, 화장품에 널리 쓰이는 고내부상 에멀젼을 만드는 방법을 연구했고 1년 후엔 콜로이드 입자를 이용해 기저귀의 원료가 되는 다공성 고 흡수성 수지를 만드는 연구를 수행했다.
김 군은 두 번의 URP 프로그램에서 우수상을 수상했고 이 연구 결과 중 일부를 저명 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 2저자로 게재하기도 했다.
김수빈 학생은 “평소에 복수전공을 통해 생명화학공학과에서 에멀젼의 기초가 되는 유체역학, 계면 물리학 등을 배우고 화학과에서 분자 구조를 배워 왔던 것을 융합함으로서 좋은 결과가 나온 것 같다”고 말했다.
이어 “이번 연구 결과로 이중 에멀젼의 상용화에 기여할 수 있을 것으로 기대한다”며 “앞으로도 정확한 원리를 파악하고 이를 바탕으로 정교하게 컨트롤 할 수 있는 화학제품을 만들어 내고 싶다”고 말했다.
이번 연구는 URP 프로그램 및 한국연구재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 김수빈 학생이 직접 디자인한 저널 표지논문
2018.04.12
조회수 18786
-
양민양 교수, 고성능 필름형 차세대 전지 개발
〈 이 재 학 박사과정, 양 민 양 교수 〉
우리 대학 기계공학과 양민양 교수 연구팀이 고성능의 필름형 차세대 전지(슈퍼커패시터)를 저렴하고 간단한 방법으로 제작하는 데 성공했다.
연구팀은 기존의 복잡한 제작과정과 낮은 성능 등의 단점을 갖는 필름형 슈퍼커패시터를 대체할 수 있는 기술을 개발했다. 이는 새로운 고성능 소자구조를 단일공정으로 제작할 수 있는 핵심 재료 및 소자 제조 원천기술이다.
이재학 박사과정이 1저자로 참여한 이번 연구 결과는 재료, 화학분야의 국제 학술지 영국왕립화학회의 ‘저널 오브 머티리얼즈 케미스트리 에이(Journal of Materials Chemistry A)’ 12월 21일자 표지논문에 선정됐다.
슈퍼커패시터는 기존의 리튬이온배터리와 비교해 월등하게 빠른 충전 속도와 반영구적 수명을 가져 차세대 에너지 저장소자로 각광받고 있다.
무엇보다 유연한 기판에 제조되는 필름형 슈퍼커패시터는 웨어러블 및 유연 전자소자의 회로에 직접 연결돼 전원 역할을 할 수 있기 때문에 차세대 유연 전자소자의 핵심 전력소자이다.
기존에는 유연한 필름 위에 높은 표면적의 금속 전극을 형성하기 위해 포토리소그래피, 진공증착 등의 반도체 공정을 이용했다. 또한 금속전극의 표면적 향상을 위해 추가적으로 고가의 설비와 2단계의 유독한 화학 공정이 필요했다.
연구팀은 보다 빠르고 저렴하며 간단한 방법인 레이저 성장 소결 공정 기술을 개발했다. 이는 나노미터 단위의 기공을 갖는 초다공성 은(銀) 전극을 제조하는 기술로 슈퍼커패시터의 전극으로 적용하는 데 성공했다.
레이저만을 이용해 은 미세 패턴을 형성하는 동시에 내부에 다공성 나노구조를 생성해 10단계 이상 소요되던 세부 제조 과정을 1단계로 간소화했다.
연구팀은 기존 금속 나노 용액과 비교해 매우 저렴한 무입자 유기금속이온 화합물 용액을 사용해 핵생성, 열성장, 다결정 금속 막 형성으로 이어지는 특수한 성장 소결 원리를 규명했다.
연구팀은 일반적인 단일물질 대칭구조의 슈퍼커패시터 전극과 달리 이종(異種)의 금속산화물(이산화망간과 산화철)을 각각 양극과 음극으로 비대칭 적용해 구동 전압을 크게 향상시켰다.
이를 통해 전력 보유량을 극대화해 고용량 에너지 저장소자를 개발했고, 4초 내 초고속 충전이 가능하고 5천 번 이상의 내구성 테스트에서 안정적으로 작동하는 것을 확인했다.
양 교수는 “이번 연구 결과는 향후 웨어러블 및 유연 전자기기 기판에 포함돼 전력을 공급할 수 있는 에너지 저장소자로 사용 가능하다”며 “전원까지 포함하는 진정한 의미의 완전한 유연 전자기기의 현실화에 더 가까워졌다”고 말했다.
□ 그림 설명
그림1. 논문 표지 이미지
그림2. 제조된 필름형 슈퍼커패시터와 그 성능
그림3. 레이저 성장 소결 메카니즘
그림4. 레이저 조사조건에 따른 은 전극 형상 변화
2018.01.11
조회수 15775
-
박현규 교수, RNA 분해효소의 활성 검출기술 개발
〈 이 창 열 박사과정 〉
우리 대학 생명화학공학과 박현규 교수 연구팀이 새로운 RNA 분해효소(RNase H)의 활성을 검출하는 기술을 개발했다.
연구팀은 헤어핀 자기조립 반응이라는 고효율의 신호증폭 반응을 이용해 RNA 분해효소의 활성을 효과적으로 분석하는 기술을 개발했다.
RNA 분해효소가 HIV 바이러스 증식에 필수적으로 관여하는 물질임을 고려할 때 박 교수 연구팀의 연구가 향후 에이즈를 치료하는 데 기여할 수 있을 것으로 기대된다.
이창열, 장효원 박사과정이 공동 1저자로 참여한 이번 연구는 영국왕립화학회가 발행하는 국제 학술지 ‘나노스케일(Nanoscale)’ 2017년도 42호(11월 14일 발행) 표지논문으로 선정됐다.
현재 개발된 RNA 분해효소의 활성을 검출하는 기술들은 일반적으로 값비싼 형광체, 소광체가 필수적이고 그 도입 과정도 복잡하다는 한계가 있다. 또한 신호를 증폭시킬 수단이 없기 때문에 전반적으로 검출 성능이 매우 낮다.
연구팀은 기술의 한계를 극복하기 위해 헤어핀 자기조립 반응이라는 기술을 이용했다. 이 기술은 검출신호를 증폭시켜 RNA 분해효소 활성이 더 민감하게 검출될 수 있도록 도와준다.
그리고 연구팀은 이 헤어핀 자기조립 반응의 결과물이 형광신호의 발생에 적합한 지-쿼드러플렉스(G-quadruplex) 구조를 갖도록 반응시스템을 설계했다. 지-쿼드러플렉스 구조와 결합해 강한 형광을 내는 형광물질을 사용함으로써 기존의 RNA 분해효소 활성 검출 기술의 한계를 극복하는 고성능의 RNA 분해효소 활성 검출 기술을 개발했다.
또한 이 기술을 이용해 RNA 분해효소의 활성 저해제를 선별할 수 있었다.
연구팀의 연구 성과는 일반에 잘 알려진 에이즈를 치료하는 데 기여할 수 있을 것으로 예상된다. 에이즈는 HIV 바이러스가 발병하면 나타나는 전염병으로 HIV 바이러스는 역전사 반응의 특성을 갖는 일명 레트로 바이러스이다.
레트로 바이러스는 RNA가 DNA로 변하는 특성을 갖는다. 그리고 이 과정에서 RNA 분해효소가 개입해야만 이 특성을 유지할 수 있다. RNA 분해효소의 활성을 막을 수 있다면 HIV 바이러스의 발현을 막을 수 있는 것이다.
박 교수는 “이번 연구에서 개발된 기술은 RNA 분해효소의 활성 외에도 다양한 효소 활성 검출 기술 개발에 응용 가능하다”며 “이를 통해 효소 관련 질병 치료 연구에 다양하게 활용될 수 있을 것으로 기대한다”고 말했다.
이번 연구는 과학기술정보통신부가 시행하는 글로벌프론티어사업(바이오나노헬스가드연구단)과 중견연구자지원사업(도약연구)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 나노스케일 42호 표지
2017.11.22
조회수 17510