본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%83%9D%EC%84%B1%ED%98%95AI
최신순
조회순
‘로봇스케치’ 도쿄 데뷔, 최우수 심사위원상 수상
VR 헤드셋을 쓴 디자이너(산업디자인학과 이준협 박사)가 태블릿과 펜으로 아무 것도 없는 가상 공간 속에서 유려한 입체 형태와 복잡한 관절 구조를 가지는 4족 거미 로봇을 단 몇 분 만에 그려서 완성했다. 디자이너가 컨트롤러를 조작하자 움직이던 거미 로봇이 일어나 2족 휴머노이드 로봇으로 자세를 수정하고 두 발을 짚고 걸음을 내딛기 시작했다. (2024 시그래프 아시아 리얼타임 라이브의 KAIST 로봇스케치 시연 장면) 우리 대학 12월 6일 도쿄 국제 포럼에서 열린 ‘시그래프 아시아 2024’의 하이라이트인 리얼타임 라이브(Real-Time Live!)에서 산업디자인학과 배석형 교수팀이 기계공학과 황보제민 교수팀과 협업하여 개발한 ‘로봇스케치(RobostSketch)’ 기술이 최우수 심사위원상(Jury’s Choice)을 수상했다고 9일 밝혔다. ‘시그래프 리얼타임 라이브’는 컴퓨터 그래픽스 및 상호작용 분야에서 ‘꿈의 무대’로 알려져 있다. 매년 전 세계에서 엄선된 10여 개의 혁신적인 기술만이 무대에 오른다. 모든 시연은 사전 녹화 없이 실시간으로 이루어지며, 6분이라는 제한된 시간 안에 기술의 독창성과 가능성을 선보여야 한다. KAIST의 로봇스케치는 이러한 무대에서 새로운 로봇 디자인 프로세스의 가능성을 보이며 큰 주목을 받았으며, 단 하나의 기술에만 수여되는 최우수 심사위원상을 수상했다. 로봇스케치는 단순히 외형과 구조를 시각적으로 표현하는 설계 도구를 넘어, 3D 스케칭에 생성형 AI와 몰입형 VR을 접목해 로봇 디자인의 개념을 새롭게 정의한 혁신적 기술이다. 디자이너는 VR 환경에서 태블릿과 펜을 사용해 복잡한 관절형 구조를 직관적으로 표현하고, 이를 실제 크기로 확인할 수 있다. 디자이너가 그린 로봇은 강화학습을 통해 현실 세계의 물리 법칙을 따르는 시뮬레이션 속에서 보행법과 움직임을 학습한다. 이를 통해 디자이너는 실제 세계에서 작동 가능한 로봇 디자인을 VR 공간 안에서 만들고, 로봇을 직접 움직이며 로봇이 가질 동작의 자연스러움과 안정성을 실시간으로 확인할 수 있다. 로봇스케치는 3D 스케칭 전문가인 산업디자인학과 배석형 교수 연구팀과 로봇 강화학습 전문가인 기계공학과 황보제민 교수 연구팀의 협업으로 완성됐다. 배석형 교수는 “기존 로봇 디자인의 한계를 극복하고, 로봇 디자이너가 상상하는 모든 것을 실시간으로 표현할 수 있는 도구를 만들고 싶었다”고 밝혔다. 이어 “로봇 디자인은 단순히 외형뿐 아니라 로봇의 움직임과 기능, 더 나아가 사용자와의 상호작용까지 모두 포함하는 과정이며 로봇 디자이너와 로봇 엔지니어의 원활한 소통을 촉진하고 현실 프로토타이핑에 소모되는 시간과 비용을 크게 줄일 수 있는 로봇스케치는 앞으로 로봇 개발과 제품화 과정에서 중요한 도구가 될 것”이라고 덧붙였다. 이 연구는 ‘DRB-KAIST 스케치더퓨처 연구센터’의 지원 아래 이루어진 결과로, 해당 센터는 3D 스케칭, AI, VR 기술을 결합해 전문가의 창의성과 생산성을 극대화하는 도구를 연구하며 첨단 기술과 디자인의 융합 가능성을 탐구하고 있다. 앞으로 로봇 디자인뿐 아니라 미래 산업 전반에서 고도화된 디자인 도구의 발전이 기대된다. ACM SIGGRAPH Asia 2024 리얼타임 라이브 <로봇 스케치> 시연 영상: https://youtu.be/5wi53Z2_sAk
2024.12.09
조회수 2053
국내 최초 인공지능과 리걸테크 학부 강좌 개설
최근 ChatGPT와 같은 생성형 AI 기술의 등장으로 인공지능 패러다임이 변화하면서, 모든 산업 분야가 새로운 국면을 맞이하고 있다. 생성형 AI 콘텐츠에 대한 윤리적 문제와 법적 해석, 그리고 리걸테크 산업에 대응할 수 있는 융합형 인재 양성의 필요성이 대두되고 있다. 우리 대학은 2024년 가을학기부터 학부생 대상으로 ‘생성형 AI와 리걸테크(Generative AI and Legal Tech)’과목을 신설한다고 30일 공식 발표했다. 이 과목은 최신 인공지능 기술과 법률 분야가 만나는 흥미로운 주제를 다룬다. 생성형 AI는 글쓰기, 이미지 생성, 음악 작곡 등 새로운 콘텐츠를 만들어내는 인공지능 기술을 말하며, 리걸테크는 법률 서비스에 기술을 접목한 것을 의미한다. 학생들은 이 과목을 통해 컴퓨테이션 법률학, 법률 AI 시스템, 거대언어모델 이론 및 생성형 AI의 법적 이슈, AI 윤리 등을 배우게 된다. 특히, 생성형 AI와 관련된 주요 법적 및 윤리적 이슈들을 심도 있게 다룰 예정이다. 우리 대학은 본 강좌의 전문성 강화를 위해 인텔리콘 연구소의 임영익 대표이사를 문술미래전략대학원 겸직교수로 임용했다. 임 대표는 지난 10여 년간 법률 인공지능과 컴퓨테이션 법률학 이론을 체계적으로 연구해 왔으며, 세계 법률 인공지능 대회에서 2년 연속 우승하는 등 법률 인공지능 분야에서 탁월한 실무 경험과 기술력을 보유하고 있다. 강의 주임교수를 맡은 전우정 교수는 인공지능 거버넌스, 지식재산권, 디지털자산, 계약법 등에 정통한 학자로, 임 대표와 협력하여 본 강좌를 이끌 예정이다. 전 교수는 “본 과목은 생성형 AI와 법률융합에 관한 학술적 이론과 차세대 리걸테크 시스템 개발 방법론을 제공한다. 구체적으로 AI가 만든 작품의 저작권, AI의 개인정보 처리, AI 결정에 대한 책임 문제, AI 규제, 설명가능성, 블랙박스(black box) 문제, 투명성 의무(transparency obligations) 등 생성형 AI 관련 법률 및 윤리 이슈에 대한 미래학적 접근을 포함하고 있다”라고 설명했다. 또한 “이를 통해 학생들은 기술의 발전이 법률 분야에 미치는 영향을 이해하고, 미래의 변화에 대비할 수 있는 지식을 얻게 될 것”이라고 덧붙였다. 인텔리콘 연구소의 임영익 대표는 “컴퓨테이션 법률학은 수학, 통계학, 뇌과학, 인지과학 등의 기초 학문과 거대언어모델(LLM) 같은 첨단 인공지능 기술, 그리고 법학이 복합적으로 연결된 초융합 분야”라고 설명하면서, “학부 과정에서 이러한 최첨단 이론을 접하는 것은 학생들의 시야를 넓히고, 세계를 선도할 수 있는 독창적인 진로를 개척하는 데 큰 도움이 될 것”이라고 강조했다. 이 과목은 법률 문서 자동 분석, 판결 예측, 법률 시각화 시뮬레이션, 법률 검색증강생성 기술(Legal-RAG) 등 리걸테크 개발 방법론도 함께 다룰 예정이다. 우리 대학은 이 과목을 통해 미래의 인공지능 산업과 법률 서비스가 어떻게 변화할지 예측하고 준비하는 데 도움을 줄 것으로 기대하고 있다.
2024.08.30
조회수 2283
생성형 AI로 혁신적 신약 개발 가능성 열어
최근 자연어나 이미지, 동영상, 음악 등 다양한 분야에서 주목받는 생성형 AI가 신약 설계 분야에서도 기존 신규성 문제를 극복하고 새로운 혁신을 일으키고 있다고 하는데 어떤 기술일까? 우리 대학 화학과 김우연 교수 연구팀이 단백질-분자 사이의 상호작용을 고려해 활성 데이터 없이도 타겟 단백질에 적합한 약물 설계 생성형 AI를 개발했다고 18일 밝혔다. 신규 약물을 발굴하기 위해서는 질병의 원인이 되는 타겟 단백질에 특이적으로 결합하는 분자를 찾는 것이 중요하다. 기존의 약물 설계 생성형 AI는 특정 단백질의 이미 알려진 활성 데이터를 학습에 활용하기 때문에 기존 약물과 유사한 약물을 설계하려는 경향이 있다. 이는 신규성이 중요한 신약 개발 분야에서 치명적인 약점으로 지적되어 왔다. 또한 사업성이 높은 계열 내 최초(First-in-class) 타겟 단백질에 대해서는 실험 데이터가 매우 적거나 전무한데, 이 경우 기존 방식의 생성형 AI를 활용하는 것이 불가능하다. 연구팀은 이런 데이터 의존성 문제를 극복하기 위해 단백질 구조 정보만으로 분자를 설계하는 기술 개발에 주목했다. 타겟 단백질의 약물 결합 부위에 대한 3차원 구조 정보를 주형처럼 활용해 해당 결합 부위에 꼭 맞는 분자를 주조하듯 설계하는 것이다. 마치 자물쇠에 딱 맞는 열쇠를 설계하는 것과 같은 이치다. 또한 기존 단백질 구조 기반 3차원 생성형 AI 모델들은 신규 단백질에 대해 설계한 분자들의 안정성과 결합력이 떨어지는 등 낮은 일반화 성능을 개선하기 위해서 연구팀은 신규 단백질에 대해서도 안정적으로 결합할 수 있는 분자를 설계할 수 있는 기술을 개발하는 데 초점을 뒀다. 연구팀은 설계한 분자가 단백질과 안정적으로 결합하기 위해서는 단백질-분자 간 상호작용 패턴이 핵심 역할을 하는 것에 착안했다. 연구팀은 생성형 AI가 이러한 상호작용 패턴을 학습하고, 분자 설계에 직접 활용할 수 있도록 모델을 설계하고 재현할 수 있도록 학습시켰다. 기존 단백질 구조 기반 생성형 AI 모델들은 부족한 학습 데이터를 보완하기 위해 10만~1,000만 개의 가상 데이터를 활용하는 반면, 이번 연구에서 개발한 모델의 장점은 수천 개의 실제 실험 구조만을 학습해도 월등히 높은 성능을 발휘한다는 것이다. 이는 자연에서 관찰되는 단백질-분자 상호작용 패턴을 사전 지식의 형태로 학습에 활용함으로써 적은 데이터만으로도 일반화 성능을 획기적으로 높인 것에 기인한다. 일례로 아시아인에 주로 발견되는 돌연변이 상피 성장인자 수용체(EGFR-mutant)*는 비소세포폐암의 주요 원인으로 알려져 있는데, 이를 타겟으로 하는 약물을 설계하기 위해서는 야생형(wild-type) 수용체**에 대한 높은 선택성을 고려하는 것이 필수적이다. *상피 성장인자 수용체: 상피 성장인자 수용체:상피 성장인자 수용체는 상피 세포의 성장을 촉진하는 인자에 결합함으로써 활성화되는 막 단백질로, 이 수용체의 돌연변이로 인한 지나친 활성은 다양한 종양의 발생과 관련이 있다고 알려져 있음 **야생형 수형체: 야생형은 자연 상태에서 가장 흔하게 발견되는 유전자형 또는 표현형으로, 유전자나 생체 분자 등의 변이가 없는 정상적인 상태를 말함 연구진은 생성형 AI를 통해 돌연변이가 일어난 아미노산에 특이적인 상호작용을 유도해 분자를 설계했고, 그 결과 생성된 분자의 23%가 이론상으로 100배 이상의 선택성을 가지는 것으로 예측됐다. 이와 같은 상호작용 패턴에 기반한 생성형 AI는 인산화효소 저해제(kinase inhibitor)* 등과 같이 약물 설계에 있어 선택성이 중요한 상황에서 더욱 효과적으로 활용될 수 있다. *인산화효소 저해제: 단백질의 인산화를 촉진하는 효소로, 일반적으로 아데노신 삼인산(ATP)으로부터 인산기를 단백질의 특정 잔기에 전달함. 인산화효소는 세포 내 신호전달 네트워크의 핵심 조절자로서, 다양한 질병의 기전에 관여하여 약물 개발의 표적으로 여겨지고 있음. 이를 위해 인산화효소에 결합하여 활성을 억제하는 목적을 가지는 분자를 인산화효소 저해제라 함 제1 저자로 참여한 화학과 정원호 박사과정 학생은 “사전 지식을 인공지능 모델에 사용하는 전략은 상대적으로 데이터가 적은 과학 분야에서 적극적으로 사용되어 왔다”며 “이번 연구에서 사용한 분자 간 상호작용 정보는 약물 분자뿐 아니라 다양한 생체 분자를 다루는 바이오 분야의 문제에도 유용하게 적용될 수 있을 것”이라고 말했다. 한국연구재단의 지원을 받아 수행된 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications) (IF=16.6)’ 2024년 3월 15호에 게재됐다. (논문명: 3D molecular generative framework for interaction-guided drug design, 논문 링크: https://www.nature.com/articles/s41467-024-47011-2)
2024.04.18
조회수 5297
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1