-
‘로봇스케치’ 도쿄 데뷔, 최우수 심사위원상 수상
VR 헤드셋을 쓴 디자이너(산업디자인학과 이준협 박사)가 태블릿과 펜으로 아무 것도 없는 가상 공간 속에서 유려한 입체 형태와 복잡한 관절 구조를 가지는 4족 거미 로봇을 단 몇 분 만에 그려서 완성했다. 디자이너가 컨트롤러를 조작하자 움직이던 거미 로봇이 일어나 2족 휴머노이드 로봇으로 자세를 수정하고 두 발을 짚고 걸음을 내딛기 시작했다. (2024 시그래프 아시아 리얼타임 라이브의 KAIST 로봇스케치 시연 장면)
우리 대학 12월 6일 도쿄 국제 포럼에서 열린 ‘시그래프 아시아 2024’의 하이라이트인 리얼타임 라이브(Real-Time Live!)에서 산업디자인학과 배석형 교수팀이 기계공학과 황보제민 교수팀과 협업하여 개발한 ‘로봇스케치(RobostSketch)’ 기술이 최우수 심사위원상(Jury’s Choice)을 수상했다고 9일 밝혔다.
‘시그래프 리얼타임 라이브’는 컴퓨터 그래픽스 및 상호작용 분야에서 ‘꿈의 무대’로 알려져 있다. 매년 전 세계에서 엄선된 10여 개의 혁신적인 기술만이 무대에 오른다.
모든 시연은 사전 녹화 없이 실시간으로 이루어지며, 6분이라는 제한된 시간 안에 기술의 독창성과 가능성을 선보여야 한다. KAIST의 로봇스케치는 이러한 무대에서 새로운 로봇 디자인 프로세스의 가능성을 보이며 큰 주목을 받았으며, 단 하나의 기술에만 수여되는 최우수 심사위원상을 수상했다.
로봇스케치는 단순히 외형과 구조를 시각적으로 표현하는 설계 도구를 넘어, 3D 스케칭에 생성형 AI와 몰입형 VR을 접목해 로봇 디자인의 개념을 새롭게 정의한 혁신적 기술이다.
디자이너는 VR 환경에서 태블릿과 펜을 사용해 복잡한 관절형 구조를 직관적으로 표현하고, 이를 실제 크기로 확인할 수 있다. 디자이너가 그린 로봇은 강화학습을 통해 현실 세계의 물리 법칙을 따르는 시뮬레이션 속에서 보행법과 움직임을 학습한다.
이를 통해 디자이너는 실제 세계에서 작동 가능한 로봇 디자인을 VR 공간 안에서 만들고, 로봇을 직접 움직이며 로봇이 가질 동작의 자연스러움과 안정성을 실시간으로 확인할 수 있다.
로봇스케치는 3D 스케칭 전문가인 산업디자인학과 배석형 교수 연구팀과 로봇 강화학습 전문가인 기계공학과 황보제민 교수 연구팀의 협업으로 완성됐다.
배석형 교수는 “기존 로봇 디자인의 한계를 극복하고, 로봇 디자이너가 상상하는 모든 것을 실시간으로 표현할 수 있는 도구를 만들고 싶었다”고 밝혔다.
이어 “로봇 디자인은 단순히 외형뿐 아니라 로봇의 움직임과 기능, 더 나아가 사용자와의 상호작용까지 모두 포함하는 과정이며 로봇 디자이너와 로봇 엔지니어의 원활한 소통을 촉진하고 현실 프로토타이핑에 소모되는 시간과 비용을 크게 줄일 수 있는 로봇스케치는 앞으로 로봇 개발과 제품화 과정에서 중요한 도구가 될 것”이라고 덧붙였다.
이 연구는 ‘DRB-KAIST 스케치더퓨처 연구센터’의 지원 아래 이루어진 결과로, 해당 센터는 3D 스케칭, AI, VR 기술을 결합해 전문가의 창의성과 생산성을 극대화하는 도구를 연구하며 첨단 기술과 디자인의 융합 가능성을 탐구하고 있다. 앞으로 로봇 디자인뿐 아니라 미래 산업 전반에서 고도화된 디자인 도구의 발전이 기대된다.
ACM SIGGRAPH Asia 2024 리얼타임 라이브 <로봇 스케치> 시연 영상: https://youtu.be/5wi53Z2_sAk
2024.12.09
조회수 2183
-
반도체 정밀 공정 흐린 영상 복원 가능하다
생물학 연구에 사용되는 형광 현미경이나 반도체 산업에 사용되는 주사전자현미경의 공통점은 불안정성으로 인해 흐려진 영상(블러, blur)을 보정하는 과정이 반드시 필요하다는 점이다. 우리 연구진이 굉장히 강한 잡음에 의해 손상된 왜곡 영상에 대해 적응형 필터와 생성형 인공지능 모델을 융합해 영상을 복원하는 데 성공했다.
우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 삼성전자 DS부문 반도체연구소 차세대공정개발실과 공동 연구를 통해 왜곡 및 강한 잡음이 존재하는 의료·산업 영상을 복원하는 기술을 개발했다고 26일 밝혔다.
스마트폰 카메라 사진에 영상의 흐림·왜곡이 생겼을 때 보정하는 문제를 디컨볼루션(deconvolution) 또는 디블러링(deblurring)이라고 하며, 흐려진 영상 정보만 이용해 선명한 영상을 복원하는 기술을 블라인드 디컨볼루션(blind deconvolution)이라고 한다. 흥미롭게도 디컨볼루션 문제는 일상뿐만 아니라 생물학 연구, 반도체 산업 등 다양한 분야에서 공통적으로 발생한다.
예를 들어, 형광 현미경은 세포와 분자 수준의 미세 구조를 시각화하기 때문에 측정된 형광 신호는 산란이나 회절, 수차 등의 효과로 인해 흐려지기 때문에 디컨볼루션 기법을 통해 보정하는 과정이 반드시 필요하다.
또한, 반도체 산업에서는 수천 개의 생산 공정 중간에 검사·계측 기술을 통해 발생할 수 있는 미세 공정 오류를 감지하고, 공정 수율 개선을 위한 프로세스 개선 과정에 사용되는 주사전자현미경이 전자 빔의 불안정성으로 인해 영상이 흐려지기 쉬우며, 이를 보정하는 과정이 반드시 필요하다.
연구팀은 이처럼 영상이 흐려지는 원인은 움직임, 빛의 산란, 전자의 불안정성 등과 같이 다양하지만, 공통적으로 ‘영상의 흐려짐을 없앤다’라는 점에서 수학적으로 동일한 접근 방법이 활용될 수 있다고 생각했다.
특히 잡음 수준이 높은 영상의 경우, 영상의 잡음을 효과적으로 억제함과 동시에 블러 효과가 제거된 선명한 영상을 복원하는 과정의 균형을 맞추는 것이 매우 중요하다는 점을 착안했다.
연구팀은 위너 디컨볼루션*을 기반으로 영상을 복원하는 접근법을 개발했다. 이를 적응형 잡음 억제 변수, 영상 생성형 인공지능 모델과 결합해 영상 복원 과정에서 발생할 수 있는 잡음을 억제하고 영상 선명도도 높였다.
*위너 디컨볼루션(Wiener deconvolution)은 왜곡된 영상을 역 필터(inverse filter)를 기반으로 깨끗한 영상으로 복원하는 전통적인 방식임.
연구팀은 잡음 민감도가 높은 주사전자현미경으로부터 측정된 왜곡된 영상으로부터 깨끗하고 초점이 맞는 나노미터 단위의 반도체 구조에 대한 영상을 성공적으로 복원해 냄으로써 반도체 검사·계측에 매우 효과적으로 적용할 수 있음을 실험적으로 증명했다.
바이오및뇌공학과 이찬석 연구원은 “이번 연구를 통해 강한 잡음 속에서 왜곡된 영상을 복원하는 난제를 해결했다ˮ며, 이어 "이번 연구에서는 무작위적 잡음을 극복하는 영상 복원 기술을 개발하는 데에 집중했고, 향후 비균일 영상 복원 및 다양한 손상 형태를 극복하는 영상 복원 기술 개발에 주력할 것이다ˮ라고 밝혔다.
바이오및뇌공학과 이찬석 박사과정이 제1 저자로 참여한 이번 연구는 컴퓨터 비전 분야 최고 학회인 ‘제18회 유럽 컴퓨터 비전 학회(The 18th European Conference on Computer Vision)’ 에서 지난 10월 1일에 이탈리아 밀란에서 발표됐고, Springer Nature에서 출판하는 Lecture Notes in Computer Science의 ECCV 2024 프로시딩 집에 게재될 예정이다. (논문명: Blind image deblurring with noise-robust kernel estimation).
2024.11.26
조회수 1657
-
국내 최초 인공지능과 리걸테크 학부 강좌 개설
최근 ChatGPT와 같은 생성형 AI 기술의 등장으로 인공지능 패러다임이 변화하면서, 모든 산업 분야가 새로운 국면을 맞이하고 있다. 생성형 AI 콘텐츠에 대한 윤리적 문제와 법적 해석, 그리고 리걸테크 산업에 대응할 수 있는 융합형 인재 양성의 필요성이 대두되고 있다.
우리 대학은 2024년 가을학기부터 학부생 대상으로 ‘생성형 AI와 리걸테크(Generative AI and Legal Tech)’과목을 신설한다고 30일 공식 발표했다.
이 과목은 최신 인공지능 기술과 법률 분야가 만나는 흥미로운 주제를 다룬다. 생성형 AI는 글쓰기, 이미지 생성, 음악 작곡 등 새로운 콘텐츠를 만들어내는 인공지능 기술을 말하며, 리걸테크는 법률 서비스에 기술을 접목한 것을 의미한다.
학생들은 이 과목을 통해 컴퓨테이션 법률학, 법률 AI 시스템, 거대언어모델 이론 및 생성형 AI의 법적 이슈, AI 윤리 등을 배우게 된다. 특히, 생성형 AI와 관련된 주요 법적 및 윤리적 이슈들을 심도 있게 다룰 예정이다.
우리 대학은 본 강좌의 전문성 강화를 위해 인텔리콘 연구소의 임영익 대표이사를 문술미래전략대학원 겸직교수로 임용했다. 임 대표는 지난 10여 년간 법률 인공지능과 컴퓨테이션 법률학 이론을 체계적으로 연구해 왔으며, 세계 법률 인공지능 대회에서 2년 연속 우승하는 등 법률 인공지능 분야에서 탁월한 실무 경험과 기술력을 보유하고 있다.
강의 주임교수를 맡은 전우정 교수는 인공지능 거버넌스, 지식재산권, 디지털자산, 계약법 등에 정통한 학자로, 임 대표와 협력하여 본 강좌를 이끌 예정이다.
전 교수는 “본 과목은 생성형 AI와 법률융합에 관한 학술적 이론과 차세대 리걸테크 시스템 개발 방법론을 제공한다. 구체적으로 AI가 만든 작품의 저작권, AI의 개인정보 처리, AI 결정에 대한 책임 문제, AI 규제, 설명가능성, 블랙박스(black box) 문제, 투명성 의무(transparency obligations) 등 생성형 AI 관련 법률 및 윤리 이슈에 대한 미래학적 접근을 포함하고 있다”라고 설명했다. 또한 “이를 통해 학생들은 기술의 발전이 법률 분야에 미치는 영향을 이해하고, 미래의 변화에 대비할 수 있는 지식을 얻게 될 것”이라고 덧붙였다.
인텔리콘 연구소의 임영익 대표는 “컴퓨테이션 법률학은 수학, 통계학, 뇌과학, 인지과학 등의 기초 학문과 거대언어모델(LLM) 같은 첨단 인공지능 기술, 그리고 법학이 복합적으로 연결된 초융합 분야”라고 설명하면서, “학부 과정에서 이러한 최첨단 이론을 접하는 것은 학생들의 시야를 넓히고, 세계를 선도할 수 있는 독창적인 진로를 개척하는 데 큰 도움이 될 것”이라고 강조했다.
이 과목은 법률 문서 자동 분석, 판결 예측, 법률 시각화 시뮬레이션, 법률 검색증강생성 기술(Legal-RAG) 등 리걸테크 개발 방법론도 함께 다룰 예정이다. 우리 대학은 이 과목을 통해 미래의 인공지능 산업과 법률 서비스가 어떻게 변화할지 예측하고 준비하는 데 도움을 줄 것으로 기대하고 있다.
2024.08.30
조회수 2378
-
문일철 교수팀, 북경대와 영국 ICL 제치고 ICML 2024 챌린지 우승
우리 대학 산업및시스템공학과 문일철 교수 연구팀이 세계 최고 수준의 기계학습 학회인 ‘국제머신러닝학회(ICML, International Conference on Machine Learning) 2024’에서 개최된 ‘멀티모달 작업계획 생성 경진대회(EgoPlan)’에서 다수의 세계 연구팀을 모두 제치고 1위로 우승을 했다고 30일 밝혔다.
본 대회는 7월 21일부터 27일까지 오스트리아 비엔나에서 개최됐으며, 참가자는 북경대(中), 북경 AGI연구소(中) 및 임페리얼칼리지 런던(Imperial College London, 英) 등의 6개국 13개 기관이 참여해 경쟁했다. 우리 연구팀은 국내 유일의 참가 기관으로 7월 26일 우승상 및 혁신상을 수상했다.
이번 대회는 인공지능이 주방에서 요리하는 과정을 비디오 및 지문으로 학습한 이후, 경험하지 못한 요리 과정에서 상식적으로 합당한 의사결정을 내려 조리할 수 있는지를 경쟁하는 시합이었다. 이는 시각 정보와 지문 정보 등의 멀티모달 정보를 조합하며, 학습에 반영되지 않은 상식까지 반영해 의사결정을 내리는 시험이다. 이 기술은 최소한의 학습만으로도 로봇이 다양한 멀티모달 정보 및 기초 상식을 활용해 자율 제조 및 서비스를 수행할 수 있도록 개발하는 것이 핵심이다.
산업및시스템공학과 이광현(석사과정), 강미나(석사과정) 등 총 11명의 팀으로 참가한 응용인공지능 연구실(이하 AAILab) 팀은 상식 기반 추론을 통한 작업계획 생성의 정확도 1위 성능으로 우승상(Outstanding Champion Award) 및 기술의 우수성을 인정받아 혁신상(Innovation Award)을 수상해, 2개 상을 동시에 수상했다. 이번 대회를 위해 AAILab 팀은 멀티모달 대규모 모델의 파인튜닝 학습에 대한 연구 개발 결과를 적용해 우승을 차지했다.
문일철 교수는 “중국팀들이 대회를 위해 위챗(WeChat) 대화방까지 마련해 서로 협력한다는 얘기를 전해 듣고는 경쟁이 치열하다고 느꼈다. 하지만 KAIST 팀도 각고의 노력으로 우승할 수 있었다. 학생들이 두 달 동안 거의 잠을 자지 못했다”고 우승 소회를 밝혔다. 그리고 문 교수는 “이번 대회의 출제 문제는 요리하는 인공지능이지만, 사실 테슬라에서 시험하고 있는 휴머노이드 제조 로봇에 활용될 수 있는 상식을 가진 인공지능을 만드는 기술이 본질이다. 많은 중국 참가자가 보여주듯이 중국의 로봇 및 인공지능 기술 선점 노력을 엿볼 수 있다”라고 분석했다.
이번 연구는 정보통신기획평가원(IITP)에서 지원한 사람중심인공지능 핵심원천기술개발사업 중 ‘이종데이터기반 상식 추출, 이해, 추론을 위한 인공지능 기술개발(연구책임자 문일철)’을 통해 이뤄졌다.
2024.07.30
조회수 3540
-
생성형 AI로 혁신적 신약 개발 가능성 열어
최근 자연어나 이미지, 동영상, 음악 등 다양한 분야에서 주목받는 생성형 AI가 신약 설계 분야에서도 기존 신규성 문제를 극복하고 새로운 혁신을 일으키고 있다고 하는데 어떤 기술일까?
우리 대학 화학과 김우연 교수 연구팀이 단백질-분자 사이의 상호작용을 고려해 활성 데이터 없이도 타겟 단백질에 적합한 약물 설계 생성형 AI를 개발했다고 18일 밝혔다.
신규 약물을 발굴하기 위해서는 질병의 원인이 되는 타겟 단백질에 특이적으로 결합하는 분자를 찾는 것이 중요하다. 기존의 약물 설계 생성형 AI는 특정 단백질의 이미 알려진 활성 데이터를 학습에 활용하기 때문에 기존 약물과 유사한 약물을 설계하려는 경향이 있다. 이는 신규성이 중요한 신약 개발 분야에서 치명적인 약점으로 지적되어 왔다. 또한 사업성이 높은 계열 내 최초(First-in-class) 타겟 단백질에 대해서는 실험 데이터가 매우 적거나 전무한데, 이 경우 기존 방식의 생성형 AI를 활용하는 것이 불가능하다.
연구팀은 이런 데이터 의존성 문제를 극복하기 위해 단백질 구조 정보만으로 분자를 설계하는 기술 개발에 주목했다. 타겟 단백질의 약물 결합 부위에 대한 3차원 구조 정보를 주형처럼 활용해 해당 결합 부위에 꼭 맞는 분자를 주조하듯 설계하는 것이다. 마치 자물쇠에 딱 맞는 열쇠를 설계하는 것과 같은 이치다.
또한 기존 단백질 구조 기반 3차원 생성형 AI 모델들은 신규 단백질에 대해 설계한 분자들의 안정성과 결합력이 떨어지는 등 낮은 일반화 성능을 개선하기 위해서 연구팀은 신규 단백질에 대해서도 안정적으로 결합할 수 있는 분자를 설계할 수 있는 기술을 개발하는 데 초점을 뒀다.
연구팀은 설계한 분자가 단백질과 안정적으로 결합하기 위해서는 단백질-분자 간 상호작용 패턴이 핵심 역할을 하는 것에 착안했다. 연구팀은 생성형 AI가 이러한 상호작용 패턴을 학습하고, 분자 설계에 직접 활용할 수 있도록 모델을 설계하고 재현할 수 있도록 학습시켰다.
기존 단백질 구조 기반 생성형 AI 모델들은 부족한 학습 데이터를 보완하기 위해 10만~1,000만 개의 가상 데이터를 활용하는 반면, 이번 연구에서 개발한 모델의 장점은 수천 개의 실제 실험 구조만을 학습해도 월등히 높은 성능을 발휘한다는 것이다. 이는 자연에서 관찰되는 단백질-분자 상호작용 패턴을 사전 지식의 형태로 학습에 활용함으로써 적은 데이터만으로도 일반화 성능을 획기적으로 높인 것에 기인한다.
일례로 아시아인에 주로 발견되는 돌연변이 상피 성장인자 수용체(EGFR-mutant)*는 비소세포폐암의 주요 원인으로 알려져 있는데, 이를 타겟으로 하는 약물을 설계하기 위해서는 야생형(wild-type) 수용체**에 대한 높은 선택성을 고려하는 것이 필수적이다.
*상피 성장인자 수용체: 상피 성장인자 수용체:상피 성장인자 수용체는 상피 세포의 성장을 촉진하는 인자에 결합함으로써 활성화되는 막 단백질로, 이 수용체의 돌연변이로 인한 지나친 활성은 다양한 종양의 발생과 관련이 있다고 알려져 있음
**야생형 수형체: 야생형은 자연 상태에서 가장 흔하게 발견되는 유전자형 또는 표현형으로, 유전자나 생체 분자 등의 변이가 없는 정상적인 상태를 말함
연구진은 생성형 AI를 통해 돌연변이가 일어난 아미노산에 특이적인 상호작용을 유도해 분자를 설계했고, 그 결과 생성된 분자의 23%가 이론상으로 100배 이상의 선택성을 가지는 것으로 예측됐다. 이와 같은 상호작용 패턴에 기반한 생성형 AI는 인산화효소 저해제(kinase inhibitor)* 등과 같이 약물 설계에 있어 선택성이 중요한 상황에서 더욱 효과적으로 활용될 수 있다.
*인산화효소 저해제: 단백질의 인산화를 촉진하는 효소로, 일반적으로 아데노신 삼인산(ATP)으로부터 인산기를 단백질의 특정 잔기에 전달함. 인산화효소는 세포 내 신호전달 네트워크의 핵심 조절자로서, 다양한 질병의 기전에 관여하여 약물 개발의 표적으로 여겨지고 있음. 이를 위해 인산화효소에 결합하여 활성을 억제하는 목적을 가지는 분자를 인산화효소 저해제라 함
제1 저자로 참여한 화학과 정원호 박사과정 학생은 “사전 지식을 인공지능 모델에 사용하는 전략은 상대적으로 데이터가 적은 과학 분야에서 적극적으로 사용되어 왔다”며 “이번 연구에서 사용한 분자 간 상호작용 정보는 약물 분자뿐 아니라 다양한 생체 분자를 다루는 바이오 분야의 문제에도 유용하게 적용될 수 있을 것”이라고 말했다.
한국연구재단의 지원을 받아 수행된 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications) (IF=16.6)’ 2024년 3월 15호에 게재됐다. (논문명: 3D molecular generative framework for interaction-guided drug design, 논문 링크: https://www.nature.com/articles/s41467-024-47011-2)
2024.04.18
조회수 5500
-
화합물 생성AI 기술로 신약 개발 앞당긴다
신약 개발이나 재료과학과 같은 분야에서는 원하는 화학 특성 조건을 갖춘 물질을 발굴하는 것이 중요한 도전으로 부상하고 있다. 우리 대학 연구팀은 화학반응 예측이나 독성 예측, 그리고 화합물 구조 설계 등 다양한 문제를 동시에 풀면서 기존의 인공지능 기술을 뛰어넘는 성능을 보이는 기술을 개발했다.
김재철AI대학원 예종철 교수 연구팀이 분자 데이터에 다중 모달리티 학습(multi-modal learning) 기술을 도입해, 분자 구조와 그 생화학적 특성을 동시에 생성하고 예측이 가능해 다양한 화학적 과제에 광범위하게 활용가능한 인공지능 기술을 개발했다고 25일 밝혔다.
심층신경망 기술을 통한 인공지능의 발달 이래 이러한 분자와 그 특성값 사이의 관계를 파악하려는 시도는 꾸준히 이루어져 왔다. 최근 비 지도 학습(unsupervised training)을 통한 사전학습 기법이 떠오르면서 분자 구조 자체로부터 화합물의 성질을 예측하는 인공지능 연구들이 제시되었으나 새로운 화합물의 생성하면서도 기존 화합물의 특성 예측이 동시에 가능한 기술은 개발되지 못했다.
연구팀은 화학 특성값의 집합 자체를, 분자를 표현하는 데이터 형식으로 간주해 분자 구조의 표현식과 함께 둘 사이의 상관관계를 아울러 학습하는 AI학습 모델을 제안했다. 유용한 분자 표현식 학습을 위해 컴퓨터 비전 분야에서 주로 연구된 다중 모달리티 학습 기법을 도입해, 두 다른 형식의 데이터를 통합하는 방식으로, 바라는 화합물의 성질을 만족하는 새로운 화합물의 구조를 생성하거나 주어진 화합물의 성질을 예측하는 생성 및 성질 특성이 동시에 가능한 모델을 개발했다.
연구팀이 제안한 모델은 50가지 이상의 동시에 주어지는 특성값 입력을 따르는 분자 구조를 예측하는 등 분자의 구조와 특성 모두의 이해를 요구하는 과제를 해결하는 능력을 보였으며, 이러한 두 데이터 정보 공유를 통해 화학반응 예측 및 독성 예측과 같은 다양한 문제에도 기존의 인공지능 기술을 뛰어넘는 성능을 보이는 것으로 확인됐다.
이 연구는 독성 예측, 후보물질 탐색과 같이 많은 산업계에서 중요하게 다뤄지는 과제를 포함해, 더 광범위하고 풍부한 분자 양식과 고분자, 단백질과 같은 다양한 생화학적 영역에 적용될 수 있을 것으로 기대된다.
예종철 교수는 “새로운 화합물의 생성과 화합물의 특성 예측 기술을 통합하는 화학분야의 새로운 생성 AI기술의 개척을 통해 생성 AI 기술의 저변을 넓힌 것에 자부심을 갖는다”고 말했다.
예종철 교수 연구팀의 장진호 석박통합과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’지난 3월 14일 자 온라인판에 게재됐다. (논문명 : Bidirectional Generation of Structure and Properties Through a Single Molecular Foundation Model)
한편 이번 연구는 한국연구재단의 AI데이터바이오선도기술개발사업으로 지원됐다.
2024.03.25
조회수 5815
-
생성형 인공지능·가상현실 결합한 3D 스케칭 연구 본격화
우리 대학이 생성형 인공지능(generative AI)과 가상현실(VR)을 활용하여 초고속 생산성 시대를 열어가기 위한 본격적인 도전을 시작한다.
27일 대전 본원에 문을 연 'DRB-KAIST 스케치더퓨처 연구센터(센터장 배석형)'는 생성형 인공지능과 가상현실을 3D(3차원) 스케칭과 결합한 미래형 제품 개발 프로세스를 연구하기 위해 설립됐다.
로봇, 모빌리티, 인공 단백질과 같은 첨단 제조 산업 분야는 제품 개발 주기가 매우 길 뿐만 아니라, 설계 결함이 발견되면 다시 아이디어 발상 단계로 돌아가 실물 제작과 테스트까지의 모든 과정을 반복해야 한다. 또한, 복잡한 3차원 구조체가 한데 맞물려 움직이면서 고도의 기능을 수행하기 때문에, 기존 2차원 스크린 작업 환경에서는 설계 의도를 입력하거나 결과물을 해석하는 데 한계가 있었다.'DRB-KAIST 스케치더퓨처 연구센터'는 사람의 의도를 가장 빠르고 효과적으로 생성형 인공지능에 전달하는 수단으로 최신 가상현실 3D 스케칭 기술을 활용할 계획이다. 가상현실 몰입 공간 안에서 사람이 아이디어를 떠올리는 즉시 3D 스케칭으로 시각화하면, 인공지능이 이를 뼈대 삼아 구체화함으로써 실물을 제작하지 않고도 반복적으로 문제점을 수정해 점진적으로 완성도를 높일 수 있다.
이를 위해, ▴로봇 디자인 ▴모빌리티 디자인 ▴단백질 디자인을 3개 혁신 전략 분야로 삼고, 3D 스케칭 전문가인 배석형(산업디자인학과) 교수를 필두로 명현(전기및전자공학부), 박대형·성민혁(전산학부), 김경수·박해원·황보제민(기계공학과), 김호민(생명과학과) 교수 등 5개 학과 8명의 연구진과 KIST 박한범(뇌과학연구소) 박사가 범학제적으로 연구를 수행할 예정이다.
동일고무벨트 주식회사(대표 이윤환, 이하 DRB)는 연구센터를 통해 ▴정기 학술 워크숍 및 데모데이 개최 ▴DRB 연구원의 산학 교류 ▴DRB 매칭 조직의 신제품·신사업 탐색, ▴대규모 국가 연구개발 지원사업 합동 유치 추진 등을 진행한다. 기술혁명의 시대를 맞는 21세기 중후반에 대비한 새로운 기업 운영 체제를 만들어 가겠다는 포부다.
27일 오후 우리 대학 대전 본원 산업디자인학과동(N25)에서 개최된 개소식에는 이광형 총장, 배석형 센터장 등 KAIST 보직교수 및 센터 참여교수와 DRB 김세연 전략고문 및 임원진 등 30여 명이 참석했으며, 현판식이 함께 진행됐다.배석형 DRB-KAIST 스케치더퓨처 연구센터장은 "인공지능의 잠재력을 사람이 의도에 따라 자유자재로 부릴 수 있는 것이 핵심"이라며, "사람이 가진 고도의 창의성을 스케칭을 통해 자유롭게 발상하고 표현하는 연구는 앞으로 더욱 중요해질 것"이라고 강조했다.
2024.02.29
조회수 5023
-
‘생성 AI와 헬스케어의 미래’ 워크숍 개최
우리 대학이 5일 오후 '생성AI와 헬스케어의 미래' 워크숍을 대전 본원에서 개최한다.
KAIST 디지털 바이오헬스 AI연구센터(센터장 예종철)의 개소를 기념하기 위해 마련된 이번 워크숍에서는 디지털 헬스케어 분야에서 활용되는 인공지능의 최신 연구 동향과 응용 사례가 공유된다.
'의료 데이터의 인공지능 활용' 세션에서는 콴젱 리(Quanzheng Li) 하버드의대 교수가 '의학 분야의 기초모델 : 대형 언어 모델과 대형 비전 모델'을 주제로 기조강연한다.
리 교수는 하버드 대학교 의과대학에서 진행되고 있는 대형 언어 모델* 및 대형 멀티모달리티 모델** 연구를 소개한다. 또한, 이러한 최첨단 기술들이 의료 데이터 해석과 활용 현장에 가져다준 혁신적인 변화를 임상 사례를 들어 설명한다. * 대형 언어 모델(Large Language Model, LLM): 방대한 텍스트 데이터로 훈련된 인공지능 모델 ** 대형 멀티모달 모델(Large Multi-modal Model, LMM): 텍스트와 함께 이미지, 소리, 비디오 등 다양한 유형의 데이터를 처리할 수 있는 인공지능 모델
김선 서울대학교 컴퓨터공학부 교수는 '바이오인포매틱스의 혁신' 세션에서 'AI 기술을 이용한 약물 반응 예측'을 주제로 기조강연한다.
인공지능 기반 약물 반응 예측 모델의 개발, 임상 데이터를 활용한 인공지능 알고리즘의 적용 사례, 환자 개인별 치료 계획 수립을 위한 인공지능의 역할 등을 조명하고 인공지능 기술이 약물 반응 예측에 미치는 영향과 잠재적 한계점을 토론한다.
산업계에는 나군호 네이버 헬스케어 연구소장이 참석해 '디지털 헬스케어 2024: 인공지능 시대'를 주제로 기조강연한다.
나 소장은 챗GPT로 대표되는 생성적 인공지능 기술이 의료 데이터 분석, 신약 개발, 맞춤형 치료 계획 수립 등 다방면의 디지털 헬스케어에 적용되고 있는 연구 동향을 소개한다. 네이버에서 진행되는 의료 생성 인공지능 기반연구와 이 기술이 헬스케어 산업에 미치는 긍정적인 영향 및 잠재적 도전 과제들에 대해서도 논의한다.
또한, 기술 교류와 네트워킹의 장도 함께 마련돼 참가자들이 디지털 바이오 헬스 분야에 적용되는 인공지능의 미래에 대해 논의하고 아이디어를 교환하는 기회를 제공한다.
예종철 KAIST 디지털 바이오헬스 AI 연구센터장은 "이번 워크숍은 KAIST가 추진하는 생성 인공지능 기반 의료 인공지능 연구를 산·학·연에 알리고 국내·외 연구진들과 협력해 센터를 이끌어갈 혁신적인 발전 방향을 모색하는 자리가 될 것"이라고 말했다.한편, KAIST 디지털 바이오헬스 AI 연구센터는 바이오의료 분야의 생성형 인공지능 원천모델 구축을 위해 2023년 12월 개소했다. 바이오의료 영상 및 신호, 임상기록, 유전체 및 오믹스, 약물 상호작용, 웨어러블 기반 라이프 로그 등이 중점 연구 분야다. 전문가 연합(mixture-of-expert:MOE) 형태로 최적의 추론을 할 수 있는 일반화된 인공지능(General AI) 플랫폼에 관한 원천 기술을 개발 및 바이오 의료 생성 AI 분야의 세계적인 선두그룹을 양성을 목표로 국내·외 기관과 네트워크를 구축해 협력하고 있다.
2024.02.05
조회수 3976
-
차미영·문수복 교수, ACM 인터넷측정학회 테스트 오브 타임 어워드 수상
우리 대학 차미영·문수복 전산학부 교수가 지난 10월 프랑스 니스에서 열린 ACM 인터넷측정학회(Internet Measurement Conference)에서 '테스트 오브 타임 어워드(Test of Time Award)'를 수상했다.
이 상은 10년 이상 지속적인 영향력을 행사하는 논문에 수여하는 상이다. 인터넷측정학회에서는 올해 처음 제정됐으며, 차미영·문수복 교수가 초대 수상자로 선정됐다. 선정된 논문은 2007년 발표된 '세계 최대의 사용자 생성 콘텐츠 분석(영문명: I Tube, You Tube, Everybody Tubes: Analyzing the World’s Largest User Generated Content Video System)'이다. 유튜브(YouTube)와 다음(Daum) 등을 비롯한 사용자 생성 콘텐츠(UGC) 시스템에 올라온 200만 개의 비디오 정보와 시청 통계 데이터를 수집해 분석한 논문이다. 이전까지는 영상들의 인기도 분포가 일명 80:20의 법칙으로 불리는 파레토(Pareto) 법칙*을 따르는 것으로 생각되어왔다. 그러나 이 연구를 통해 20%보다 더욱 집중된 상위 10%의 인기 동영상이 전체 조회 수의 80%를 차지하는 현상을 처음 확인했으며, 당시 최우수논문상(Best Paper Award)을 받았다. *파레토의 법칙(Pareto principle): 20%의 원인이 80%의 결과를 가져온다는 이론이와 함께, 유튜브와 같은 새로운 콘텐츠 시장이 전통적인 콘텐츠 시장과 어떻게 다른지를 인기도 하위 90%의 콘텐츠를 들어 설명했다. 비인기 콘텐츠는 인기도를 곡선으로 나타낸 분포도에서 불룩 솟아오른 상위 10% 콘텐츠의 뒤에 꼬리처럼 길게 늘어진다고 해서 소위 롱테일(long tail)이라 불린다. 연구팀은 사용자 생성 콘텐츠의 인기 분포가 초기에는 멱법칙(power-law)*을 따르지만, 시간이 지나며 플랫폼의 순위 알고리즘과 정보 필터링과 같은 요인으로 절단된 멱법칙(truncated power-law)로 변하는 과정을 실험으로 증명했다. *멱법칙(power-law): 한 수(數)가 다른 수의 거듭제곱으로 표현되는 두 수의 함수적 관계이를 통해, 롱테일에 속하는 콘텐츠라 할지라도 사용자에게 개별화된 알고리즘으로 추천할 경우 시청 조회 수를 현저히 늘릴 수 있다는 점을 실험적으로 제시했다. 이 논문은 발표 후 지난 15년간 비디오 콘텐츠의 캐싱*과 전송, 순위 알고리즘, 광고 노출을 비롯한 다양한 산업에 영향을 미쳤다. *캐싱(cashing): 데이터 복사본을 미리 저장해 두어 빠르게 전송하는 방법
현재까지 2,000번 이상 피인용 되어 인터넷측정학회 역사상 세 번째로 많이 피인용 된 연구로 기록됐다. 발표한 지 10년이 지난 후에도 600회 이상 피인용 되며 꾸준한 영향력을 발휘하고 있다. 차미영 교수는 "연구를 진행할 당시 유튜브는 서비스를 시작한 지 2년 남짓 된 신규 플랫폼으로 지금의 위상과는 매우 달랐다"라고 설명했다. 이어, 차 교수는 "'새로운 데이터를 수집해 분석하는 것 자체가 모험과도 같았던 논문이 오랜 기간 동료 연구자들에게 사랑받고 인용되는 연구가 되어 기쁘다"라고 소감을 밝혔다.차 교수는 2007년 스페인 텔레포니카(Telefonica)에서 인턴십을 하며 공저자인 파블로 로드리게즈(Pablo Rodriguez) 디렉터, 지도교수인 문수복 교수와 함께 이 연구를 이끌었다. 현재 기초과학연구원(IBS) 데이터 사이언스 그룹 CI로 활약하고 있다. 당시 공저자로 참여한 곽해운, 안용열 연구원은 현재 싱가폴 경영대, 인디애나 주립대 교수로 각각 재직 중이다.
2022.11.10
조회수 5951
-
딥러닝 생성모델의 오류 수정 기술 개발
우리 대학 AI대학원 최재식 교수(설명가능 인공지능연구센터장) 연구팀이 심층 학습(이하 딥러닝) 생성모델의 오류 수정 기술을 개발했다고 25일 밝혔다.
최근 딥러닝 생성모델(Deep Generative Models)은 이미지, 음성뿐만 아니라 문장 등 새로운 콘텐츠를 생성하는 데 널리 활용되고 있다. 이런 생성모델의 발전에도 불구하고 최근 개발된 생성모델도 여전히 결함이 있는 결과를 만드는 경우가 많아, 국방, 의료, 제조 등 중요한 작업 및 학습에 생성모델을 활용하기는 어려운 점이 있었다.
최 교수 연구팀은 딥러닝 내부를 해석하는 설명가능 인공지능 기법을 활용해, 생성모델 내부에서 이미지 생성과정에서 문제를 일으키는 유닛(뉴런)을 찾아 제거하는 알고리즘을 고안해 생성모델의 오류를 수리했다. 이러한 생성 오류 수리 기술은 신경망 모델의 재학습을 요구하지 않으며 모델 구조에 대한 의존성이 적어, 다양한 적대적 생성 신경망에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다. 또한, 고안된 기술은 딥러닝 생성모델의 신뢰도를 향상해 생성모델이 중요 작업에도 적용될 수 있을 것으로 기대된다.
AI대학원의 알리 투씨(Ali Tousi), 정해동 연구원이 공동 제1 저자로 참여한 이번 연구는 `국제 컴퓨터 비전 및 패턴인식 학술대회 (IEEE Conference on Computer Vision and Pattern Recognition, CVPR)'에서 6월 23일 발표됐다. (논문명: Automatic Correction of Internal Units in Generative Neural Networks, CVPR 2021).
적대적 생성 신경망은 생성기와 구분기의 적대적 관계를 이용한 모델로서, 생성 이미지의 품질이 높고 다양성이 높아, 이미지 생성뿐만 아니라 다양한 분야(예, 시계열 데이터 생성)에서 주목받고 있다.
딥러닝 생성모델의 성능을 향상하기 위해서 적대적 생성기법 및 생성기의 새로운 구조 설계 혹은 학습 전략의 세분화와 같은 연구가 활발히 진행되고 있다. 그러나 최신 적대적 생성 신경망 모델은 여전히 시각적 결함이 포함된 이미지를 생성하고 있으며, 재학습을 통해서 이를 해결하기에는 오류 수리를 보장할 수 없으며, 많은 학습 시간과 비용을 요구하게 된다. 이렇게 규모가 큰 최신 적대적 생성 신경망 모델의 일부 오류를 해결하기 위해 모델 전체를 재학습하는 것은 적합하지 않다.
연구팀은 문제 해결을 위해 생성 오류를 유도하는 딥러닝 내부의 유닛(뉴런)을 찾아 제거하는 알고리즘을 개발했다. 알고리즘은 딥러닝 모델의 시각적 결함의 위치를 파악하고, 딥러닝 모델 내 여러 계층에 존재하는 오류를 유발한 유닛을 찾아서 활성화하지 못하도록 하여 결함이 발생하지 않도록 했다.
연구팀은 설명가능 인공지능 기술을 활용해 시각적 결함이 생성된 이미지의 어느 부분에 분포하는지, 또 딥러닝 내부의 어떤 유닛이 결함의 생성에 관여하는지 찾을 수 있었다. 개발된 기술은 딥러닝 생성모델의 오류를 수리할 수 있고, 생성모델의 구조에 상관없이 적용할 수 있다.
연구팀은 전통적인 구조를 가지는 `진행형 생성모델(Progressive GAN, PGGAN)'에서 개발 기술이 효과적으로 생성 오류를 수리할 수 있음을 확인했다. 수리 성능은 매사추세츠 공과대학(MIT)이 보유한 수리 기술 대비 FID 점수가 10점 정도 감소했으며, 사용자 평가에서 시험 이미지 그룹의 약 50%가 결함이 제거됐고, 약 90%에서 품질이 개선됐다는 결과를 얻었다. 나아가 특이 구조를 가지는 `StyleGAN2'와 `U-net GAN'에서도 생성 오류 수리가 가능함을 보임으로써 개발 기술의 일반성과 확장 가능성을 보였다.
연구팀이 개발한 생성모델의 오류 제거 기술은 다양한 이미지 외에도 다양한 생성모델에 적용돼 모델의 결과물에 대한 신뢰성을 높일 것으로 기대된다.
공동 제1 저자인 알리 투씨와 정해동 연구원은 "딥러닝 생성모델이 생성한 결과물에 있는 시각적 오류를 찾고, 이에 상응하는 활성화를 보이는 생성모델 내부의 유닛을 순차적으로 제거함으로써 생성 오류를 수리할 수 있음을 보였다ˮ라며 이는 "충분히 학습된 모델 내부에 미학습 혹은 잘못 학습된 내부요소가 있음을 보여주는 결과다ˮ라고 말했다.
한편 이번 연구는 2021년도 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받은 혁신성장동력프로젝트 설명가능인공지능 및 한국과학기술원 인공지능 대학원 프로그램과제를 통해서 수행됐다.
2021.06.25
조회수 19814
-
인공지능을 이용해 숨겨진 소재를 탐색하는 기술 개발
우리 대학 생명화학공학과 정유성 교수 연구팀이 인공지능(AI) 기술을 이용해 숨겨진 소재 공간을 탐색, 숨겨진 새로운 물질을 예측하는 기술을 개발하는 데 성공했다고 27일 밝혔다.
소재 연구의 궁극적인 목표는 원하는 *물성을 갖는 소재를 발견하는 것이다. 그러나 무기화합물의 가능한 모든 조성과 결정구조를 고려할 때 무한대에 가까운 경우의 수를 샅샅이 탐색하기는 쉽지 않다. 이러한 문제 해결을 위한 방안으로 컴퓨터 스크리닝 소재 탐색 방법이 널리 사용되고 있지만 찾고자 하는 소재가 스크리닝 후보군에 존재하지 않을 때는 유망한 물질 후보들을 놓치는 경우가 종종 발생한다.
☞ 물성(physical properties): 물질의 전기적, 자기적, 광학적, 역학적 성질 따위를 통틀어 이르는 말
정유성 교수 연구팀이 개발한 *소재 역설계 방법은 데이터 학습을 통해 주어진 조성을 갖는 결정구조를 새롭게 생성하게 함으로써 기존 데이터베이스에는 존재하지 않던 신물질을 발견할 수 있도록 한다. 특히, 기존의 역설계 방법에서는 원하는 조성을 제어할 수 없지만, 정 교수팀이 개발한 역설계 방법은 원하는 조성을 제어함으로써 숨어있는 화학 공간을 효율적으로 탐색해 물질을 설계할 수 있다.
☞ 소재 역설계(Materials Inverse Design): 주어진 구조에 대한 물성을 측정하는 방식의 반대 개념으로, 특정한 물성을 갖도록 소재의 구조를 역으로 찾아가는 방법
이번 정 교수팀의 연구성과인 결정구조 예측기술은 인공지능 생성모델인 적대적 생성 신경망(GAN, Generative Adversarial Network)을 기반으로 개발됐다. 또 기존의 복잡한 3차원 이미지 기반 물질 표현자의 단점을 해소하기 위해 비교적 간단한 원자들의 3차원 좌표를 기반으로 한 물질 표현자를 사용했다.
정 교수팀은 이번 연구를 통해 개발한 소재 역설계 방법을 활용, 빛을 이용한 수소생산 촉매로 활용될 수 있는 마그네슘-망간-산화물 기반의 광촉매 물질의 결정구조를 예측하는 데도 성공했다. 기존 데이터베이스에 존재하지 않는 조성들을 생성조건으로 다양한 마그네슘-망간-산화물 구조를 생성한 결과, 기존에 알려지지 않았으면서 광촉매로서 전도유망한 특성을 갖는 신물질을 다수 발견했다.
정유성 교수는 "광촉매 물질의 설계에 적용한 이번 소재 설계 프레임워크는 화합물의 화학적 조성뿐 아니라 사용자가 원하는 특정 물성을 갖는 소재를 역설계하는데 적용이 가능하다ˮ면서 "여러 소재 응용 분야에서 활용될 수 있을 것으로 기대된다ˮ고 말했다.
우리 대학 생명화학공학과 김성원 박사과정과 노주환 박사과정이 공동 제1 저자로, 토론토 대학의 아스푸루-구지크(Aspuru-Guzik) 교수가 공동연구로 참여한 이 연구성과는 미국화학회(ACS)가 발행하는 국제학술지 ACS 센트럴 사이언스(ACS Central Science) 지난 8월호에 실렸다.(논문명: Generative Adversarial Networks for Crystal Structure Prediction)
한편, 이번 연구는 과학기술정보통신부 산하 한국연구재단의 기초연구사업(중견연구) 지원을 받아 수행됐다.
2020.10.28
조회수 28194
-
이덕희 기술경영학부 교수, 『내생사회』 출간
우리 대학 기술경영학부 이덕희 교수가 동양의 중용(中庸)과 서양의 근대철학을 융합해 선진 문명사회의 길을 제시하는 『내생사회: 머리와 손발의 소통 이야기』를 출간했다. 이 교수는 학부 때부터 줄곧 경제학을 전공한 경제학자이지만 사회 전체를 통합적으로 연구하기 위해 인문학·자연과학 등에도 지속적인 관심을 가지고 탐구해왔다. '네트워크 경제' 연구를 통해 복잡계 과학에 경제학을 접목하는 한편 '도덕적 자본주의' 연구를 통해 동양사상과 경제학을 아우르는 등 다양한 융합 연구를 시도해온 이 교수는 우리 사회를 관통하는 세 가지 질문을 바탕으로 이번 저서를 기획했다.
'정녕 우리에게 도덕적 자본주의는 불가능한 것인가?', '재난은 왜 계속 되풀이되는가?', '혁신은 우리 곁에 있는가?' 등 현실적인 문제의 근원이 우리 사회의 '외생성'에서 비롯되고 있다는 통찰과 함께 이를 극복하기 위해서는 '내생사회'로의 전환을 서둘러야 한다고 이덕희 교수는 이번 저서를 통해 제시하고 있다.
이 교수는 '외생성'이란 삶의 중요한 의미를 외부적인 요소를 통해 추구하는 방식이라고 정의하고 있으며, 우리 사회를 타인 혹은 외부에 의해 발전의 동인이 촉발되어 유지되고 있는 '외생사회'로 규정했다. 이 교수는 오랫동안 정치, 경제, 문화, 종교, 사상 등 여러 방면에서 우리 고유의 것이 아닌 다른 나라에서 정립해놓은 것을 활용해 온 것이 원인이라고 지적하고 있다. 특히, 이 교수는 조선 양반 문치(文治) 카르텔은 사(士)에 과도한 특권을 부여해 농공상(農工商)과의 단절을 야기했다고 설명하고 있다.
사회의 역동성을 약화시킨 조선의 유교 사회, 개화기 서양 문물의 수용, 일제강점기 등의 역사적 과정을 거치면서 '내생성'을 키우는 동력을 상실한 결과가 부동산 불패 신화, 학벌 제일주의, 반복되는 재난과 같은 현시대의 고질적인 문제로 나타나고 있다는 것이 이 교수의 분석이다.
저자는 이러한 문제점을 극복하기 위해 대한민국이 '내생사회'로 나아가야 한다고 주장하고 있다. '내생사회'란 흩어지지 않고 무언가 차곡차곡 쌓이는 사회라 비유할 수 있으며, 중용(中庸)에서 말하는 '지극한 정성의 총합'으로 표현하고 있다.
모든 사안을 결과로 보는 것이 아니라 과정으로 보는 세계관, 내 생각과 행위를 다른 사람에게 표현하는 자기 조직화, 스스로의 노력으로 공을 세워 삶을 영위하는 주체성 등의 세 가지 조건이 갖춰질 때 비로소 '내생성'이 생겨난다고 이 교수는 강조한다.
우리 자신을 더 가까이에서 들여다보고 우리 안의 보석을 캐내는 '내생성 강화'가 각 분야에서 일어날 때, 사와 농공상, 자본의 윤리와 자본의 논리가 화해하는 '내생사회'가 도래할 것으로 이 교수는 전망하고 있다.
이 교수는 동양 유학 사상의 정수인 중용에 서양 근대철학의 거두인 화이트헤드의 과정철학·복잡계 과학·진화경제학의 내생적 발전을 접목한 융합적 접근으로 이번 저서를 집필했다. 또한, 그동안의 '외생사회'가 고착된 배경을 역사적 흐름에 근거해 증명한 뒤 '내생성'이라는 새로운 미래의 관점을 제시하고 있으며, 전문지식과 일반 지식을 아우르는 통합적 시각을 견지하고 있는 것이 이번 저서의 가장 특징이다.
이덕희 교수는 "내생사회는 머리의 세계와 손발의 세계, 즉 리(理)와 기(氣), 사와 농공상, 이론과 실제, 학교와 현장이 서로 소통할 때 가능하다"고 강조했다. 이어 그는 "한마디로 표현하기 어렵지만, '스스로 뿌리를 내리고 싹을 틔우는 힘'인 내생성이 우리 안에 굳건하게 자리 잡아 자기 언어로 스스로의 질서를 얘기할 수 있는 내생사회가 되었으면 한다"고 역설했다.
저자인 이덕희 교수는 현재 KAIST 기술경영학부 교수로 재직 중인데 고려대에서 경제학 학사, 석사를 뉴욕주립대(버팔로)에서 경제학 박사 학위를 받았다. 『공자가 다시 쓴 자본주의 강의』(2015), 『정보통신경제학』(2010), 『부뚜막이 닳도록 : 어느 경제학자의 문화적 자존 이야기』(2010), 『네트워크 이코노미 : 부분과 전체의 복잡성에 대하여』(2008) 등 통섭적 관점을 바탕으로 한 다수의 서적을 집필했다.
2020.10.13
조회수 20806