본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%A0%84%EC%82%B0%ED%95%99%EB%B6%80
최신순
조회순
세계 최초로 사람처럼 사물의 개념을 스스로 학습하는 장면 인식 기술 개발
우리 대학 전산학부 안성진 교수 연구팀이 미국 럿거스(Rutgers) 대학교와 공동연구를 통해 사람의 라벨링 없이 스스로 영상 속 객체를 식별할 수 있는 인공지능 기술을 개발했다고 1일 밝혔다. 이 모델은 복잡한 영상에서 각 장면의 객체들에 대한 명시적인 라벨링 없이도 객체를 식별하는 최초의 인공지능 모델이다. 기계가 주변 환경을 지능적으로 인지하고 추론하기 위해서는 시각적 장면을 구성하는 객체들과 그들의 관계를 파악하는 능력이 필수적이다. 하지만 이 분야의 연구는 대부분 영상의 각 픽셀에 대응하는 객체의 라벨을 사람이 일일이 표시해야 하는 지도적 학습 방식을 사용했다. 이 같은 수작업은 오류가 발생하기 쉽고 많은 시간과 비용을 요구한다는 단점이 있다. 이에 반해 이번에 연구팀이 개발한 기술은 인간과 유사하게 환경에 대한 관측만으로 객체의 개념을 스스로 자가 학습하는 방식을 취한다. 이렇게 인간의 지도 없이 스스로 객체의 개념을 학습할 수 있는 인공지능은 차세대 인지 기술의 핵심으로 기대돼왔다. 비지도 학습을 이용한 이전 연구들은 단순한 객체 형태와 배경이 명확히 구분될 수 있는 단순한 장면에서만 객체를 식별하는 단점이 있었다. 이와 달리 이번에 안성진 교수 연구팀이 개발한 기술은 복잡한 형태의 많은 객체가 존재하는 사실적인 장면에도 적용될 수 있는 최초의 모델이다. 이 연구는 그림 인공지능 소프트웨어인 DALL-E와 같이 텍스트 입력을 통해 사실적인 이미지를 생성할 수 있는 이미지 생성 연구에서 영감을 얻었다. 연구팀은 텍스트를 입력하는 대신, 모델이 장면에서 객체를 감지하고 그 객체의 표상(representation)으로부터 이미지를 생성하는 방식으로 모델을 학습시켰다. 또한, 모델에 DALL-E와 유사한 트랜스포머 디코더를 사용하는 것이 사실적이고 복잡한 영상을 처리할 수 있게 한 주요 요인이라고 밝혔다. 연구팀은 복잡하고 정제되지 않은 영상뿐만 아니라, 많은 물고기가 있는 수족관과 교통이 혼잡한 도로의 상황을 담은 유튜브 영상과 같이 복잡한 실제 영상에서도 모델의 성능을 측정했다. 그 결과, 제시된 모델이 기존 모델보다 객체를 훨씬 더 정확하게 분할하고 일반화하는 것을 확인할 수 있었다. 연구팀을 이끈 안성진 교수는 "인간과 유사한 자가 학습 방식으로 상황을 인지하고 해석하는 혁신적인 기술ˮ이라며 "시각적 상황인지 능력을 획기적으로 개선해 지능형 로봇 분야, 자율 주행 분야뿐만 아니라 시각적 인공지능 기술 전반에 비용 절감과 성능향상을 가져올 수 있다ˮ고 말했다. 이번 연구는 미국 뉴올리언스에서 지난 11월 28일부터 개최되어 12월 9일까지 진행 예정인 세계 최고 수준의 기계학습(머신러닝) 학회인 제36회 신경정보처리학회(NeurIPS)에서 발표됐다.
2022.12.02
조회수 1010
카이캐치(KaiCatch), 악성 동영상 위변조 탐지 기술 개발
우리 대학 전산학부 이흥규 명예교수 연구팀이 KAIST 창업기업인 ㈜디지탈이노텍의 후원으로 악성 위변조에 활용되는 프레임 업 변환, 보간법에 의해 생성된 프레임, 영상내 위변조 영역 등을 탐지하는 동영상 위변조 탐지 기술을 개발했다. 위변조 분야 최상위 저명 논문지인 Forensic Science International 11월호에 논문으로도 발표했다. CCTV의 대량 보급과 함께 동영상은 수많은 분쟁시 주요 증거물로 사용되고 있다. 그러나 동영상에 대한 편집 도구 기술과 인공지능 기술 발전과 함께 동영상의 편집, 프레임 삭제 및 추가 등의 위변조를 포함하여 프레임 업 변환 이라는 기술을 사용하여 위변조 동영상을 고품질 영상으로 변환함으로써 위변조 동영상을 원본과 유사하게 변환함으로써 위변조 탐지를 더욱 어렵게 하는 악성 변조 기술 등도 등장하고 있다. 이번 연구에서는 동영상내 특정 영역들의 편집 변조를 포함하여 프레임 추가, 삭제, 프레임률 변환 탐지를 포함하여 공간정보와 시간정보를 연속적으로 활용하는 프레임-업 변환을 탐지하기 위해 프레임-업 특징들을 추출하는 4개 유형의 네트워크블럭들과 보팅(voting) 기능을 채택한 프레임-업 탐지 뉴럴 네트워크를 제시하였다. 개발된 기술은 특히 동영상의 극히 작은 영역들의 정보를 사용하여 무결성 여부를 판독하기 때문에 동영상 위변조 탐지를 고속으로 수행할 수 있어 기존 기술들과 비교하여 기술의 유용성과 실용성이 매우 뛰어나다. 이번 연구는 KAIST 윤민석 박사, ㈜네이버웹튠AI의 남승훈 박사 등이 참여하였으며 KAIST에서 위변조를 잡아낸다는 의미인 카이캐치(KaiCatch) 위변조 탐지 소프트웨어 기능을 동영상으로도 크게 확장 했다는 점에서 그 의미가 있다. 개발된 기술은 영상 위변조 분야 최상위 저명 논문지인 Forensic Science International 2022년 11월호(Vol 340)에 ‘Frame-rate Up-conversion Detection based on Convolutional Neural Network for Learning Spatiotemporal Features’ 논문으로 발표 되었다. 본 연구는 한국연구재단 창의도전연구기반지원사업과 KAIST 창업기업인 ㈜디지탈이노텍의 후원으로 수행하였다.
2022.10.20
조회수 1147
인공지능 심층 학습(딥러닝) 서비스 구축 비용 최소화 가능한 데이터 정제 기술 개발
최근 다양한 분야에서 인공지능 심층 학습(딥러닝) 기술을 활용한 서비스가 급속히 증가하고 있다. 서비스 구축을 위해서 인공지능은 심층신경망을 훈련해야 하며, 이를 위해서는 충분한 훈련 데이터를 준비해야 한다. 특히 훈련 데이터에 정답지를 만드는 레이블링(labeling) 과정이 필요한데 (예를 들어, 고양이 사진에 `고양이'라고 정답을 적어줌), 이 과정은 일반적으로 수작업으로 진행되므로 엄청난 노동력과 시간적 비용이 소요된다. 따라서 훈련 데이터 구축 비용을 최소화하는 방법 개발이 요구되고 있다. 우리 대학 전산학부 이재길 교수 연구팀이 심층 학습 훈련 데이터 구축 비용을 최소화할 수 있는 새로운 데이터 동시 정제 및 선택 기술을 개발했다고 12일 밝혔다. 일반적으로 심층 학습용 훈련 데이터 구축 과정은 수집, 정제, 선택 및 레이블링 단계로 이뤄진다. 수집 단계에서는 웹, 카메라, 센서 등으로부터 대용량의 데이터가 정제되지 않은 채로 수집된다. 따라서 수집된 데이터에는 목표 서비스와 관련이 없어서 주어진 레이블에 해당하지 않는 분포 외(out-of-distribution) 데이터가 포함된다 (예를 들어, 동물 사진을 수집할 때 재규어 `자동차'가 포함됨). 이러한 분포 외 데이터는 데이터 정제 단계에서 정제돼야 한다. 모든 정제된 데이터에 정답지를 만들기 위해서는 막대한 비용이 소모되는데, 이를 최소화하기 위해 심층 학습 성능 향상에 가장 도움이 되는 훈련 데이터를 먼저 선택해 레이블링하는 능동 학습(active learning)이 큰 주목을 받고 있다. 그러나 정제와 레이블링을 별도로 진행하는 것은 데이터 검사 측면에서 중복적인 비용을 초래한다. 또한 아직 정제되지 않고 남아 있는 분포 외 데이터가 레이블링 단계에서 선택된다면 레이블링 노력을 낭비할 수 있다. 이재길 교수팀이 개발한 기술은 훈련 데이터 구축 단계에서 데이터의 정제 및 선택을 동시에 수행해 심층 학습용 훈련 데이터 구축 비용을 최소화할 수 있도록 해준다. 우리 대학 데이터사이언스대학원에 재학 중인 박동민 박사과정 학생이 제1 저자, 신유주 박사과정, 이영준 박사과정 학생이 제2, 제4 저자로 각각 참여한 이번 연구는 최고권위 국제학술대회 `신경정보처리시스템학회(NeurIPS) 2022'에서 올 12월 발표될 예정이다. (논문명 : Meta-Query-Net: Resolving Purity-Informativeness Dilemma in Open-set Active Learning) 데이터의 정제 및 선택을 동시에 고려하기 위해서 구체적으로 가장 분포 외 데이터가 아닐 것 같은 데이터 중에서 가장 심층 학습 성능 향상에 도움이 될 데이터를 선택한다. 즉, 주어진 훈련 데이터 구축 비용 내에서 최고의 효과를 내도록 데이터의 순도(purity) 지표와 정보도(informativeness) 지표의 최적 균형(trade-off)을 찾는다. 순도와 정보도는 일반적으로 서로 상충하므로 최적 균형을 찾는 것이 간단하지 않다. 이 교수팀은 이러한 최적 균형이 정제 전 데이터의 분포 외 데이터 비율과 현재 심층신경망 훈련 정도에 따라 달라진다는 점을 발견했다. 이 교수팀은 이러한 최적 균형을 찾아내기 위해 추가적인 작은 신경망 모델을 도입했다. 연구팀은 추가된 모델을 훈련하기 위해 능동 학습에서 여러 단계에 걸쳐 데이터를 선별하는 과정을 활용했다. 즉, 새롭게 선택돼 레이블링 된 데이터를 순도-정보도 최적 균형을 찾기 위한 훈련 데이터로 활용했고, 레이블이 추가될 때마다 최적 균형을 갱신했다. 이러한 방법은 목표 심층신경망의 성능 향상을 위해 추가적인 상위 레벨의 신경망을 사용하였다는 점에서 메타학습(meta-learning)의 일종이라 볼 수 있다. 연구팀은 이 메타학습 방법론을 `메타 질의 네트워크'라고 이름 붙이고 이미지 분류 문제에 대해 다양한 데이터와 광범위한 분포 외 데이터 비율에 걸쳐 방법론을 검증했다. 그 결과, 기존 최신 방법론과 비교했을 때 최대 20% 향상된 최종 예측 정확도를 향상했고, 모든 범위의 분포 외 데이터 비율에서 일관되게 최고 성능을 보였다. 또한, `메타 질의 네트워크'의 최적 균형 분석을 통해, 분포 외 데이터의 비율이 낮고 현재 심층신경망의 성능이 높을수록 정보도에 높은 가중치를 둬야 함을 연구팀은 밝혀냈다. 제1 저자인 박동민 박사과정 학생은 "이번 기술은 실세계 능동 학습에서의 순도-정보도 딜레마를 발견하고 해결한 획기적인 방법ˮ 이라면서 "다양한 데이터 분포 상황에서의 강건성이 검증됐기 때문에, 실생활의 기계 학습 문제에 폭넓게 적용될 수 있어 전반적인 심층 학습의 훈련 데이터 준비 비용 절감에 기여할 것ˮ 이라고 밝혔다. 연구팀을 지도한 이재길 교수도 "이 기술이 텐서플로우(TensorFlow) 혹은 파이토치(PyTorch)와 같은 기존의 심층 학습 라이브러리에 추가되면 기계 학습 및 심층 학습 학계에 큰 파급효과를 낼 수 있을 것이다ˮ고 말했다. 한편, 이 기술은 과학기술정보통신부 재원으로 정보통신기획평가원의 지원을 받아 SW컴퓨팅산업원천기술개발사업 SW스타랩 과제로 개발한 연구성과 결과물(2020-0-00862, DB4DL: 딥러닝 지원 고사용성 및 고성능 분산 인메모리 DBMS 개발)이다.
2022.10.12
조회수 1662
오토아이디랩, ‘디지털 대전환 컨퍼런스 부산 2022’ 주최
우리 대학 오토아이디랩(센터장 김대영)이 13일부터 이틀간 부산 벡스코에서 '디지털 대전환 컨퍼런스 부산 2022'를 주최한다. 부산광역시와 공동 주최하는 이번 행사는 우리나라 주요 산업인 조선, 항만, 해운, 물류, 수산, 스마트시티 등의 분야가 디지털 대전환 시대를 맞아 준비해야 할 전략을 논의하고 비전을 제시하기 위해 마련됐다. 이틀간 ▴디지털트윈과 메타버스 ▴국제표준과 디지털전환 ▴해양과 물류산업 ▴K-주소와 혁신성장산업 ▴스마트시티 ▴스마트 수산 등 6개의 세션과 4개의 기조 강연이 진행되며, 24명의 전문가가 참여해 각 분야의 기술동향, 글로벌 시장 및 국제표준 등의 현황을 공유한다. 첫째 날에는 최재붕 성균관대 기계공학부 교수와 하정우 네이버AI랩 연구소장이 기조 연사로 나서 각각 '메타버스 시대 바꿔야 할 3가지', '산업계에서의 AI 연구(AI Research in Industry)'를 주제로 강연한다. 이튿날에는 안병민 열린비즈랩 대표의 '디지털이 빚어내는 고객경험 혁신, 서비타이제이션'과 정구민 국민대학교 전자공학부 교수의 '자율주행산업과 모빌리티' 기조 강연이 이어진다. 또한, 산업계·학계의 소통을 지원해 디지털 전환을 가속화하고 혁신 성장산업 창출을 도모하는 자리도 마련된다. 행사 첫날인 13일, 블록체인 전문기업인 데이터젠·테크체인랩스·오스리움·와이와이소프트와 스마트 제조업체인 인타운이 오토아이디랩과 산학협력(MOU) 체결을 진행한다. 박형준 부산광역시장은 "디지털 전환은 이 시대의 숙명이자 미래를 선도하기 위한 핵심 가치이며, '그린스마트도시 부산', '디지털혁신도시 부산' 구현을 위한 큰 원동력이 될 것이다"라며, "KAIST 오토아이디랩은 '디지털 전환 국제표준기구(GS1)'의 국제 공동연구소로서 항만․물류 중심도시 부산과 협력을 통한 상당한 시너지 효과가 기대되며, 이번 컨퍼런스를 통하여 그 비전을 제시할 수 있을 것이라 확신한다"라고 말했다. 조직위원장인 김대영 KAIST 전산학부 교수는 "디지털에 의한 변화가 기하급수적으로 늘어나는 격변기 속에서 우리 기업들은 국제표준 기술을 이용한 혁신융합 생태계를 구축해 초격차 성장을 도모해야 한다"라고 강조했다. 이어, 김 교수는 "이를 위한 정보 교류와 토론의 장으로 마련된 이번 행사가 지자체·산업계·학계의 협력을 이끌어내는 계기가 되길 기대한다"라고 덧붙였다. 한편, 오토아이디랩은 비영리 민간 국제표준기구인 GS1(본부 벨기에 브뤼셀)과 협업하는 국제 공동연구소다. KAIST 오토아이디랩을 포함해 미국 MIT, 영국 케임브리지대, 스위스 취리히 연방공대, 일본 게이오대, 중국 푸단대 등 6개 대학이 운영하고 있다. KAIST는 지난 3월 부산광역시와 업무협약을 체결했으며, 지역 기업에 국제 기술표준을 보급하기 위한 산학협력의 일환으로 ‘KAIST 오토아이디랩 부산 혁신연구소’를 이달 설립할 예정이다. '디지털 대전환 컨퍼런스 부산 2022' 참가 신청 및 자세한 정보는 행사 홈페이지(https://dxcbusan2022.oliot.kr/)에서 확인할 수 있다.
2022.10.07
조회수 998
전산학부 김민혁 교수 연구팀, ACM SIGGRAPH 2022 학회 Technical Paper Award 수상
우리 대학 전산학부 김민혁 교수 연구팀은 2022년 8월 8-11일 캐나다 밴쿠버에서 열린 ACM SIGGRAPH (the 49th ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques) 2022 국제학회에서 “Sparse Ellipsometry: Portable Acquisition of Polarimetric SVBRDF and Shape with Unstructured Flash Photography” 논문으로 ‘Technical Paper Award Honorable Mention’을 수상했다. ACM SIGGRAPH 국제학회는 컴퓨터 그래픽스 분야에서 세계 최고의 학회이며, 이 학회의 49년 역사상 최초이자 유일하게 한국 주관연구팀이 Technical Paper Award를 수상했다. 빛의 물리적인 편광 성분은 극사실적인 가상 인간, 물체 및 메타버스 환경 공간을 물리적으로 더 정확하게 컴퓨터로 재현하기 위해, 컴퓨터 그래픽스 및 비전 분야에서 최근 활발하게 활용되고 있다. 이러한 편광 성분은 타원계측기법을 통해서 정보를 측정하게 되는데, 현존하는 지금까지의 기술은 초정밀 광학 기구를 통해 2-5일 간의 긴 스캐닝 시간을 거쳐야만 획득이 가능했으며, 측정할 수 있는 물체의 모양 또한 구형으로 만들어진 균일한 소재로 제한되어 왔다. 본 연구팀은 이러한 기술적인 한계를 극복하고, 고가의 전문 촬영 장비 없이, 다양한 형태의 물체를 온전한 3차원 편광 반사계 및 형상으로 수분 안에 측정할 수 있는 3차원 영상 기술을 개발하였다. 프로젝트 페이지: http://vclab.kaist.ac.kr/siggraph2022p1/ 스페인 Zaragoza대학교와 중국 Microsoft Research Asia의 공동 연구로 진행된 이 연구는 2022년 8월 8일부터 11일까지 캐나다 밴쿠버에서 열린 ACM SIGGRAPH 2022 국제 학회에서 구두 발표되고, 그래픽스 분야 최우수 저널인 ACM Transactions of Graphics에 게재되었으며, 8월 11일에 Technical Paper Award Honorable Mention을 수상했다. 이 논문의 교신저자인 김민혁 교수는 "제안하는 편광기반 3차원 스캐닝 기술은 기존의 눈으로 보기 좋은 컴퓨터 그래픽스 렌더링 기술을 물리적으로 더욱 더 정확한 렌더링 기술로 진화하는 것을 가속화할 것으로 기대하며, 극사실적인 메타버스 재현을 위한 물리기반 렌더링 패러다임의 전환은 지금껏 생각할 수 없었던 새로운 형태의 그래픽스 기술의 활용을 가능케 할 것이다"고 밝혔다.
2022.08.22
조회수 2006
KAIST, KS한국고용정보 및 대전광역시컨택센터협회 업무협약(MOU) 체결
우리 대학 전산학부 이의진 교수 연구팀은 KS한국고용정보 및 대전광역시컨택센터협회와 ‘감정노동자를 위한 휴먼 디지털 트윈 연구’와 관련한 상호 교류·협력을 위한 양해각서(MOU)를 7일 체결했다고 밝혔다. 콜센터 상담원 및 민원처리 직원 등의 감정노동자는 직무수행을 위한 감정 표현의 자제로 스트레스가 높다 보니 다른 직종에 비해 정신질환 유병률이 상대적으로 높다. 산업안전보건원의 자료에 따르면 화난 고객을 자주 응대하는 감정노동자는 우울감과 수면장애를 겪을 위험이 그렇지 않은 사람보다 각각 무려 2.8배와 3.8배 높은 것으로 조사됐다. 산업안전보건법이 2018년도에 도입되어 감정노동자의 정신건강 관리의 중요성이 드러났지만 이를 적극적으로 지원하는 개인 맞춤형 서비스가 부재하였다. 이의진 교수 연구팀은 감정노동 스트레스에 대한 가상환경 시뮬레이션을 제공하는 휴먼 디지털 트윈 기술 개발하여 개인 맞춤형 정신건강 위험 관리 솔루션을 실증하는 연구를 수행할 예정이다. 이번 양해각서 체결을 통해 세 기관은 ▲ 인공지능 기반 감정노동자 지원 서비스 개발 및 고도화를 위한 연구개발 협력 ▲ 정신건강 관리 솔루션 개발을 위한 현장 니즈 조사 지원 ▲ 인공지능 알고리즘 개발을 위한 연구 데이터셋 수집 ▲ 개인 맞춤형 정신건강 관리 솔루션 실증 협력 등 다양한 분야에서 협력할 예정이다. KS한국고용정보(대표 손영득, 유재중)는 금융 및 공공 컨택센터 아웃소싱을 지원하는 대규모 전문 인적자원 네트워크를 보유하고 있으며 컨택센터 SW 및 상담 솔루션을 연구·개발해왔다. 대전광역시 컨택센터협회(협회장 박남구)는 대전지역 전문상담사 인력 양성 및 인권 보호 사업을 총괄하고 있다. 이의진 교수는 이번 양해각서 체결을 통해 “현장 중심의 기술개발을 위한 초석이 마련되었다”라며 “상담현장의 데이터 수집을 통해 높은 예측력의 정신건강 AI 모델 개발이 가능할 것”이라고 밝혔다. 이어 유재중 대표는 “KAIST와 상담사의 정신건강 관리를 지원하는 디지털 솔루션 연구 및 실증에 적극적으로 협력하여 AI기반 미래 컨택센터 SW 기술을 선도해 나갈 것”이라고 기대감을 밝혔다. 또한, 대전광역시컨택센터협회 박남구 협회장은 “감정노동자의 정신건강을 증진할 수 있는 AI기술로 상담사들의 자긍심 고취를 기대한다”고 밝혔다. 이날 협약식에는 이동만 공과대학장과 류석영 전산학부장을 비롯해 이의진, 이성주, 홍화정, 이탁연 교수 등이 참석했다. KS한국고용정보 유재중 대표와 김현정 상무가 참석했고 대전컨택센터 박남구 협회장과 HR교육컨설팅 이정민 대표가 자리를 함께했다.
2022.07.08
조회수 1542
위치인식 기술의 혁신, 인공지능 활용한 실내외 통합 GPS 시스템 개발
우리 대학 전산학부 한동수 교수 연구팀(지능형 서비스 통합 연구실)이 실내외 환경 구분 없이 정밀한 위치인식이 가능한 `실내외 통합 GPS 시스템'을 개발했다고 8일 밝혔다. 이번에 개발된 실내외 통합 GPS 시스템은 실외에서는 GPS 신호를 사용해 위치를 추정하고 실내에서는 관성센서, 기압센서, 지자기센서, 조도센서에서 얻어지는 신호를 복합적으로 사용해 위치를 인식한다. 이를 위해 연구팀은 인공지능 기법을 활용한 실내외 탐지, 건물 출입구 탐지, 건물 진입 층 탐지, 계단/엘리베이터 탐지, 층 탐지 기법 등을 개발했다. 아울러 개발된 각종 랜드마크 탐지 기법들을 보행자 항법 기법(PDR)과 연계시킨 소위 센서 퓨전 위치인식 알고리즘도 새롭게 개발했다. 지금까지는 GPS 신호가 도달하지 않는 공간에서는 무선랜 신호나 기지국 신호를 기반으로 위치를 인식하는 것이 보통이었다. 하지만 이번에 개발된 실내외 통합 GPS 시스템은 신호가 존재하지 않고 실내지도가 제공되지 않는 건물에서도 위치인식을 가능하게 하는 최초의 기술이다. 연구팀이 개발한 알고리즘은 구글, 애플의 위치인식 서비스에서는 제공하지 않는 건물 내에서의 정확한 층 정보를 제공할 수 있다. 비전이나 지구 자기장, 무선랜 측위 방식과 달리 사전 준비 작업이 필요치 않은 장점도 있다. 전 세계 어디에서나 사용할 수 있는 범용적인 실내외 통합 GPS 시스템을 구축할 수 있는 기반이 마련됐다. 연구팀은 GPS, 와이파이, 블루투스 신호 수신 칩과 관성센서, 기압센서, 지자기센서, 조도센서 등을 탑재시킨 실내외 통합 GPS 전용 보드도 제작했다. 또한 제작된 하드웨어(HW) 보드에 개발된 센서퓨전 위치인식 알고리즘을 탑재했다. 제작된 실내외 통합 GPS 전용 하드웨어(HW) 보드의 위치인식 정확도를 대전 KAIST 본원 N1 건물에서 측정한 결과, 층 추정에 있어서는 약 95%의 정확도를, 수평 방향으로는 약 3~6미터의 정확도를 달성했다. 실내외 전환에 있어서는 약 0.3초의 전환 속도를 달성했다. 보행자 항법(PDR) 기법을 통합시켰을 때는 1미터 내외의 정확도를 달성하였다. 연구팀은 위치인식 보드가 내장된 태그를 제작하고 박물관, 과학관, 미술관 방문객들을 위한 위치기반 전시 안내 서비스에 적용할 예정이다. 개발된 실내외 통합 GPS 태그는 어린이나 노약자를 보호하는 목적으로도 활용할 수 있으며 소방관 혹은 작업장 작업자의 위치 파악에도 활용할 수 있다. 한편 지하 주차장과 같은 실내로 진입하는 차량의 위치를 추정하는 차량용 센서 퓨전 위치인식 알고리즘과 위치인식 보드도 개발하고 있다. 연구팀은 차량용 실내외 통합 GPS 위치인식 보드가 제작되면 자동차 제조사, 차량 대여 업체들과의 협력을 모색할 예정이며, 스마트폰에 탑재될 센서 퓨전 위치인식 알고리즘도 개발할 예정이다. 개발된 알고리즘이 내장된 실내외 통합 GPS 앱이 개발되면 위치인식 분야에서 다양한 사업화를 모색하는 통신사와의 협력도 가능할 것으로 기대된다. 연구팀을 이끄는 전산학부 한동수 교수는 "무선 신호가 존재하지 않고 실내지도도 주어지지 않는 건물에서 위치인식이 가능한 실내외 통합 GPS 시스템 개발은 이번이 처음이며, 그 응용 분야도 무궁무진하다. 2022년부터 개발이 시작된 한국형 GPS(KPS) 시스템, 한국형 항공위성서비스(Korea Augmentation Satellite System, KASS)와 통합되면 한국이 실내외 통합 GPS 분야에서 선도 국가로 나설 수 있으며 향후 기술 격차를 더 벌릴 수 있도록 실내외 통합 GPS 반도체 칩도 제작할 계획이다ˮ라고 말했다. 또 "개발된 실내외 통합 GPS 태그를 사용한 과학관, 박물관, 미술관 위치기반 안내 서비스는 관람객의 동선 분석에도 유용하게 활용될 수 있다. 전시물 교체를 결정할 때 요구되는 꼭 필요한 유용한 정보다. 국립중앙과학관에 우선 적용될 수 있도록 노력하겠다”라고 말했다. 한편 실내외 통합 GPS 시스템, 그리고 위치기반 관람객 동선 분석 시스템 개발은 과기정통부의 과학문화전시서비스 역량강화지원사업의 지원으로 개발됐다.
2022.07.08
조회수 2222
초대규모 인공지능 모델 처리하기 위한 세계 최고 성능의 기계학습 시스템 기술 개발
우리 연구진이 오늘날 인공지능 딥러닝 모델들을 처리하기 위해 필수적으로 사용되는 기계학습 시스템을 세계 최고 수준의 성능으로 끌어올렸다. 우리 대학 전산학부 김민수 교수 연구팀이 딥러닝 모델을 비롯한 기계학습 모델을 학습하거나 추론하기 위해 필수적으로 사용되는 기계학습 시스템의 성능을 대폭 높일 수 있는 세계 최고 수준의 행렬 연산자 융합 기술(일명 FuseME)을 개발했다고 20일 밝혔다. 오늘날 광범위한 산업 분야들에서 사용되고 있는 딥러닝 모델들은 대부분 구글 텐서플로우(TensorFlow)나 IBM 시스템DS와 같은 기계학습 시스템을 이용해 처리되는데, 딥러닝 모델의 규모가 점점 더 커지고, 그 모델에 사용되는 데이터의 규모가 점점 더 커짐에 따라, 이들을 원활히 처리할 수 있는 고성능 기계학습 시스템에 대한 중요성도 점점 더 커지고 있다. 일반적으로 딥러닝 모델은 행렬 곱셈, 행렬 합, 행렬 집계 등의 많은 행렬 연산자들로 구성된 방향성 비순환 그래프(Directed Acyclic Graph; 이하 DAG) 형태의 질의 계획으로 표현돼 기계학습 시스템에 의해 처리된다. 모델과 데이터의 규모가 클 때는 일반적으로 DAG 질의 계획은 수많은 컴퓨터로 구성된 클러스터에서 처리된다. 클러스터의 사양에 비해 모델과 데이터의 규모가 커지면 처리에 실패하거나 시간이 오래 걸리는 근본적인 문제가 있었다. 지금까지는 더 큰 규모의 모델이나 데이터를 처리하기 위해 단순히 컴퓨터 클러스터의 규모를 증가시키는 방식을 주로 사용했다. 그러나, 김 교수팀은 DAG 질의 계획을 구성하는 각 행렬 연산자로부터 생성되는 일종의 `중간 데이터'를 메모리에 저장하거나 네트워크 통신을 통해 다른 컴퓨터로 전송하는 것이 문제의 원인임에 착안해, 중간 데이터를 저장하지 않거나 다른 컴퓨터로 전송하지 않도록 여러 행렬 연산자들을 하나의 연산자로 융합(fusion)하는 세계 최고 성능의 융합 기술인 FuseME(Fused Matrix Engine)을 개발해 문제를 해결했다. 현재까지의 기계학습 시스템들은 낮은 수준의 연산자 융합 기술만을 사용하고 있었다. 가장 복잡한 행렬 연산자인 행렬 곱을 제외한 나머지 연산자들만 융합해 성능이 별로 개선되지 않거나, 전체 DAG 질의 계획을 단순히 하나의 연산자처럼 실행해 메모리 부족으로 처리에 실패하는 한계를 지니고 있었다. 김 교수팀이 개발한 FuseME 기술은 수십 개 이상의 행렬 연산자들로 구성되는 DAG 질의 계획에서 어떤 연산자들끼리 서로 융합하는 것이 더 우수한 성능을 내는지 비용 기반으로 판별해 그룹으로 묶고, 클러스터의 사양, 네트워크 통신 속도, 입력 데이터 크기 등을 모두 고려해 각 융합 연산자 그룹을 메모리 부족으로 처리에 실패하지 않으면서 이론적으로 최적 성능을 낼 수 있는 CFO(Cuboid-based Fused Operator)라 불리는 연산자로 융합함으로써 한계를 극복했다. 이때, 행렬 곱 연산자까지 포함해 연산자들을 융합하는 것이 핵심이다. 김민수 교수 연구팀은 FuseME 기술을 종래 최고 기술로 알려진 구글의 텐서플로우나 IBM의 시스템DS와 비교 평가한 결과, 딥러닝 모델의 처리 속도를 최대 8.8배 향상하고, 텐서플로우나 시스템DS가 처리할 수 없는 훨씬 더 큰 규모의 모델 및 데이터를 처리하는 데 성공함을 보였다. 또한, FuseME의 CFO 융합 연산자는 종래의 최고 수준 융합 연산자와 비교해 처리 속도를 최대 238배 향상시키고, 네트워크 통신 비용을 최대 64배 감소시키는 사실을 확인했다. 김 교수팀은 이미 지난 2019년에 초대규모 행렬 곱 연산에 대해 종래 세계 최고 기술이었던 IBM 시스템ML과 슈퍼컴퓨팅 분야의 스칼라팩(ScaLAPACK) 대비 성능과 처리 규모를 훨씬 향상시킨 DistME라는 기술을 개발해 데이터베이스 분야 최고 국제학술대회 중 하나인 ACM SIGMOD에서 발표한 바 있다. 이번 FuseME 기술은 연산자 융합이 가능하도록 DistME를 한층 더 발전시킨 것으로, 해당 분야를 세계 최고 수준의 기술력을 바탕으로 지속적으로 선도하는 쾌거를 보여준 것이다. 교신저자로 참여한 김민수 교수는 "연구팀이 개발한 새로운 기술은 딥러닝 등 기계학습 모델의 처리 규모와 성능을 획기적으로 높일 수 있어 산업적 측면에서 파급 효과가 매우 클 것으로 기대한다ˮ 라고 말했다. 이번 연구에는 김 교수의 제자이자 현재 GraphAI(그래파이) 스타트업의 공동 창업자인 한동형 박사가 제1 저자로, 김 교수가 교신저자로 참여했으며 지난 16일 미국 필라델피아에서 열린 데이터베이스 분야 최고 국제학술대회 중 하나인 ACM SIGMOD에서 발표됐다. (논문명 : FuseME: Distributed Matrix Computation Engine based on Cuboid-based Fused Operator and Plan Generation). 한편, 이번 연구는 한국연구재단 선도연구센터 사업 및 중견연구자 지원사업, 과기정통부 IITP SW스타랩 사업의 지원을 받아 수행됐다.
2022.06.20
조회수 2207
인공지능 엔진으로 영상 위변조 탐지 기술 개발
우리 연구진이 영상 내 변형 영역을 더욱 정밀하게 탐지하기 위해 영상내 색상 정보와 주파수 정보를 함께 활용하는 인공지능 엔진 기술을 학계 처음으로 개발했다. 이번 개발 기술은 기존 기술보다 정밀도와 정확도를 크게 높여 위변조 탐지 기술의 기술 유용성을 일정 수준 확보할 수 있는 기반을 제공한다는 점에서 그 의미가 크다. KAIST에서 각종 위변조 영상들을 잡아낸다는 의미를 지닌 `카이캐치(KaiCatch)' 소프트웨어는 이미지, 영상뿐만 아니라 CCTV 비디오 변형 여부도 분석할 수 있다. 우리 대학 전산학부 이흥규 교수 연구팀이 새로운 인공지능 구조와학습 방법론, 그리고 실험실 환경에서는 구하기 힘든 고급 변형 이미지 영상들을 사용해 영상 이미지 위변조 탐지 소프트웨어인 `카이캐치(KaiCatch)'의 영상 이미지 정밀도와 정확도를 크게 높일 뿐만 아니라 비디오 편집 변형도 탐지할 수 있는 카이캐치 2.1 버전을 개발했다고 13일 밝혔다. 카이캐치 소프트웨어는 `이상(異常) 유형 분석 엔진'과 `이상(異常) 영역 추정 엔진' 두 개의 인공지능 엔진으로 구성된다. `이상 유형 분석 엔진'은 블러링, 노이즈, 크기 변화, 명암 대비 변화, 모핑, 리샘플링 등을 필수 변이로 정의해 이를 탐지하며 `이상 영역 추정 엔진'은 이미지 짜깁기, 잘라 붙이기, 복사 붙이기, 복사 이동 등을 탐지한다. 이번에 새로 개발한 기술은 `이상 영역 추정 엔진'으로 기존 기술에서는 이상 영역 탐지 시 그레이 스케일(회색조)로 이상 유무를 탐지하였으나 분석 신호의 표현력이 낮고 탐지 오류가 많아 위변조 여부 판정에 어려움이 많았다. 이번에 개발된 기술은 색상 정보와 주파수 정보를 함께 활용해 정밀도(precision)와 재현율(recall)이 크게 향상되고 변형 영역을 컬러 스케일로 표현함으로써 해당 영역의 이상 유무뿐만 아니라 위변조 여부도 더욱 명확하게 판별이 가능해졌다. 연구팀은 이번 연구에서 영상 생성 시 발생하는 흔적과 압축 시 발생하는 흔적 신호들을 함께 분석하기 위해 색상 정보와 주파수 정보를 모두 활용하는 접근 방법을 학계 처음으로 제시했다. 또 이러한 방법론을 설계 구현하기 위해 주파수 정보를 하나의 분할 네트워크에서 직접 입력으로 받아들이는 방식의 ‘압축 왜곡신호 탐지 네트워크(Compression Artifact Tracing Network, 이하 CAT-Net)’을 학계 최초로 개발하고 기존 기법들과 비교해 탐지 성능이 크게 뛰어남을 입증했다. 개발한 기술은 기존에 제시된 기법들과 비교할 때 특히 원본과 변형본을 판별하는 평가 척도인 F1 점수, 평균 정밀도(average precision)에서 대단히 뛰어나 실환경 위변조 탐지 능력이 크게 강화됐다. 비디오 편집 변형의 경우도, 프레임 삭제, 추가 등에 의한 편집 변형이 흔히 CCTV 비디오 등에서 발생한다는데 착안해 이러한 비디오 편집 변형을 탐지하는 기능 역시 이번 카이캐치 2.1 버전에 탑재됐다. 이번에 카이캐치 2.1 소프트웨어를 연구 개발한 이흥규 교수는 "영상 이미지 위변조 소프트웨어인 카이캐치를 휴대폰에 탑재되는 안드로이드 앱 형태로 일반에 소개한 2021년 3월 이후 현재까지 카이캐치 앱을 통한 900여 건의 위변조 분석 의뢰와 개별적으로 60건이 넘는 정밀 위변조 분석 의뢰를 받았다. KAIST 발표 논문 수준이나 실험 결과 등을 감안할 때 위변조 분야 최고 기술로 만든 소프트웨어인데, 오탐지율이 높아 실제 탐지 정밀도가 이론치보다 매우 낮았다. 많은 경우 위변조나 변형 여부에 대한 명확한 기술 판정이 불가능했으나 이번에 개발한 카이캐치 2.1 은 CAT-Net이라는 새로운 네트워크 구조와 학습 방법론, 그리고 ‘색상 및 주파수 영역 왜곡 흔적 동시 분석’이라는 첨단 기술을 사용해 정밀도를 높여, 보다 명확한 판별이 가능하도록 개발됐다. 앞으로 영상 위변조 판단 여부가 어려운 경우가 많이 줄어들기를 기대한다”고 말했다. 이 교수는 이어 "비디오는 MP4 파일 포맷이, 그리고 영상 이미지는 JPEG 이미지들이 일반인들이 널리 사용한다는 점에서 해당 포맷을 주 개발 대상으로 삼았다. 영상 이미지의 경우 영상 편집 변형 시 영상에 남겨지는 인위적으로 발생하는 JPEG 압축 미세 신호 탐지에 주안점을 두어, 위변조 여부와 위변조 영역을 잡아내는 것에 집중했다. 비디오의 경우 특정 프레임들을 삭제하거나 삽입하는 경우, 프레임 부분 편집 후 재압축 하는 경우 등을 탐지한다. 최근 CCTV 비디오 편집 여부에 대한 분쟁이 많아 크게 도움을 줄 수 있을 것으로 기대하며 향후에도 지속적으로 연구 개발해 취약점들을 보완해 나갈 계획이다ˮ 고 덧붙였다. 현재 카이캐치 소프트웨어는 안드로이드 기반 휴대폰의 구글 플레이스토어에서 ‘카이캐치’를 검색하여 앱을 다운로드 받아 설치한 후, 영상 이미지들을 카이캐치에 업로드하면 위변조 여부를 간단하게 테스트해 볼 수 있다. 한편 이번 연구는 제1 저자로 참여한 우리 대학 전기및전자공학부 권명준 박사, 그리고 김창익 교수, 남승훈 박사, 유인재 박사 등과 공동으로 수행됐으며, `스프링거 네이처(Springer Nature)'에서 발간하는 컴퓨터 비전 분야 톱 국제저널인 `국제 컴퓨터 비전 저널(International Journal of Computer Vision, IF 7.410)'에 2022년 5월 25일 字 온라인판에 게재됐다. (논문명 : Learning JPEG Compression Artifacts for Image Manipulation Detection and Localization) 이번 연구는 한국연구재단 창의도전연구기반지원사업지원과 KAIST 창업기업인 ㈜디지탈이노텍(http://www.kaicatch.com/) 과의 산학협력 연구로 수행됐다.
2022.06.13
조회수 2200
차상길 교수, IEEE Test-of-Time Award 수상
우리 대학 전산학부 정보보호대학원 차상길 교수가 올해 5월에 열린 정보보안 최정상 학회인 IEEE Security & Privacy[1]에서 Test-of-Time Award를 수상했다. Test-of-Time Award란 지난 10년간 정보보안 분야에서 가장 큰 영향력을 행사했던 논문에 수여하는 것으로, 올해는 총 3개의 논문이 선정되었으며, 한국인으로서는 최초이다. 선정된 논문은 차상길 교수가 지난 2012년에 발표했던 ‘Unleashing Mayhem on Binary Code’로 바이너리코드에서 버그를 자동으로 찾고, 공격코드로 연계되는 익스플로잇을 생성하는 알고리즘을 세계 최초로 제안했던 것이다 [2]. 당시 개발된 알고리즘은 인공지능 해킹대회인 CGC(Cyber Grand Challenge)[3] 등의 세계적 사이버 보안 해킹 경진대회에서 사용되는 핵심 알고리즘이라 할 수 있다. 차상길 교수는 이 논문을 계기로 바이너리 분석을 통한 버그 및 취약점을 찾는 기술개발을 하기 위한 다양한 연구를 수행하여 왔으며, 현재는 다양한 바이너리 코드를 분석할 수 있는 토종 플랫폼인 'B2R2'를 개발하고 있다[4]. < 참고사이트 > [1] 43rd IEEE Symposium on Security and Privacy : https://www.ieee-security.org/TC/SP2022/ [2] 수상관련 논문 'Unleashing Mayhem on Binary Code' : https://www.computer.org/csdl/proceedings-article/sp/2012/06234425/12OmNzcPAxU [3] 사이버그랜드챌린지 홈페이지 : https://www.darpa.mil/program/cyber-grand-challenge [4] B2R2 깃허브 : https://github.com/B2R2-org/B2R2
2022.05.27
조회수 1808
전산학부 김주호 교수 연구팀, ACM CHI 2022 학술대회 최우수논문상 및 우수논문상 수상
우리 대학 전산학부 김주호 교수가 이끄는 연구팀이 지난 4월 30일부터 5월 6일까지 열린 美 컴퓨터협회 인간-컴퓨터 상호작용 학술대회(이하 ACM CHI 2022)에서 최우수논문상(Best Paper Award)과 우수논문상(Honorable Mention Award)을 받았다고 19일 밝혔다. ACM CHI 학술대회는 인간-컴퓨터 상호작용(Human-Computer Interaction: HCI) 분야의 세계 최고 권위 학회로 구글 스칼라 h-5 인덱스 기준 HCI 분야 저널과 학술대회를 통틀어 1위에 올라있다. 최우수논문상은 전체 논문 중 상위 1%의 논문에, 우수논문상은 상위 5%의 논문에 주어지는 상이다. 김주호 교수는 이번 ACM CHI 2022 학술대회에 총 7개의 논문을 발표해 발표 논문 수로 전 세계 연구자 중 공동 1위에 올랐다. KAIST 소속의 논문은 총 19개로, 전 세계 기관 중 5위에 올라 KAIST의 세계 수준의 연구 역량을 증명했다. 전산학부 김정연 연구원(제1 저자, 석사과정 졸업), 최유빈 전기및전자공학부 석사과정, 멍 시아 박사(전산학부 박사 후 연구원; 현재 미국 카네기멜론대학교 박사 후 연구원)로 구성된 김주호 교수 연구팀은 `Mobile-Friendly Content Design for MOOCs: Challenges, Requirements, and Design Opportunities' 라는 제목의 논문으로 CHI 2022 학술대회 최우수논문상을 받았다. 이 연구는 모바일 환경에서 영상 기반 학습 콘텐츠를 시청하는 학습자가 겪는 어려움을 분석하고 이를 해결하기 위한 가이드라인을 제시했다. 연구팀은 134명의 학습자를 대상으로 한 설문과 21명을 대상으로 한 인터뷰를 분석해 너무 작거나 과밀한 텍스트가 영상 콘텐츠의 가독성을 떨어뜨리는 것이 주요 문제임을 밝혔다. 또한 조명, 소음, 주변 환경의 잦은 변화로 인한 학습상황의 장애 또한 중요한 문제임을 밝혔다. 이러한 분석을 토대로 101개의 영상 강의 속 41,722개의 영상 프레임에 대한 모바일 환경 적합도를 분석한 결과 전반적으로 낮은 수준의 적합도를 보인다는 것을 확인했다. 예를 들어 텍스트 크기의 경우 불과 24.5%의 영상 프레임만이 모바일 환경에서의 학습에 적합한 것으로 나타났다. 연구팀은 이러한 문제를 극복하기 위해 영상 콘텐츠의 가독성을 높이고 모바일 학습 상황에서 발생하는 장애를 극복하기 위한 가이드라인을 제시했다. 팬데믹 이후 영상 기반 학습에 대한 중요성과 의존성이 더욱 높아지고 있는 상황에서, 이 연구는 작은 화면의 모바일 기기로 학습을 하는 많은 학습자의 어려움을 분석하고 극복 방법을 제시했다는 면에서 의미가 있다. 또한 나아가 학습 영상의 문제를 인간과 인공지능의 협업으로 해결하는 기술까지 제시하여 기존 학습 영상의 활용도를 높이면서 학습 경험 개선을 가능케 하였다. 이 기술은 다양한 영상 기반 학습 플랫폼이나 컨텐츠 제작 환경에 적용될 수 있다. 한편 전산학부 김태수 박사과정(제1 저자), 최다은 석사과정, 최윤서 박사과정 연구원으로 구성된 연구팀은 `Stylette: Styling the Web with Natural Language' 라는 제목의 논문으로 CHI 2022 학술대회 우수논문상을 받았다. 연구팀은 전문용어를 모르는 비전문가가 음성으로 웹사이트의 스타일을 수정할 수 있도록 지원하는 새로운 인터페이스 기술을 개발했다. 다양한 웹사이트를 사용하다 보면 접근성 문제, 기기 환경의 제약, 불편하고 보기 힘든 디자인, 스타일 선호 등의 이유로 원하는 내용을 찾기 어렵거나 사용에 어려움을 겪는 경우가 있다. 하지만 프로그래밍과 디자인의 전문성이 없는 일반인이 직접 웹사이트의 스타일을 수정하기는 어려워 대부분 사용자는 불편함을 참고 사용한다. 사용자가 "이 부분은 더 강조해줘ˮ, "좀 더 모던한 디자인으로ˮ와 같이 자신의 의도를 일상의 언어로 표현하고, 시스템이 사용자의 의도를 파악해 자동으로 스타일을 수정해 준다면 어떨까? 위와 같은 질문을 바탕으로 김주호 교수 연구팀이 개발한 `Stylette' 시스템은 사용자의 자연 언어 기반 음성 입력을 인공지능이 파악해 가장 의도에 부합하는 새로운 스타일을 자동으로 추천해 준다. 연구팀은 언어 인공지능, 시각 인공지능, 사용자 인터페이스 기술을 결합해 새로운 시스템을 만들었다. 언어 측면에서는 대규모 언어모델 인공지능이 사용자의 일상언어로 표현된 의도를 적절한 스타일 요소로 변환해 준다. 시각 측면에서는 컴퓨터 비전 인공지능이 170만 개의 기존 웹 디자인 요소 데이터와의 비교를 통해 현재 웹사이트에 적절한 수준의 스타일을 추천해 준다. 40명의 일반인을 대상으로 진행한 실험에서 이번 시스템을 사용한 사용자는 대조군과 비교해 두 배 이상 높은 성공률로 35% 적은 시간에 디자인 수정을 완료할 수 있었다. 이 연구는 최신 인공지능 기술이 직관적인 사용자 상호작용 설계에 적용되는 실질적인 사례를 제시했다는 점에서 의미가 있다. 개발된 기술은 기존 디자인 애플리케이션이나 웹브라우저에 플러그인 형태로 적용 가능하며, 사용자의 자연스러운 의도 데이터를 대규모로 수집해 웹사이트 개선이나 광고 등에도 활용할 수 있다.
2022.05.19
조회수 2754
전산학부 김범준 동문 〈좌경룡-김범준 장학기금〉 1억원 기부
배달의 민족을 서비스하는 우아한 형제들 대표인 김범준 전산학부 동문(학부 93, 석사 97)이 발전기금 1억 원을 8일 기부했다. 지난해 4월 전산학부 공간 확장을 위한 발전기금 1억 원을 기부한데 이은 두 번째 기부다. 김 대표의 이번 기부는 지난해 별세한 은사인 故좌경룡 교수를 기리기 위해 “좌경룡-김범준 장학기금”으로 전달되었으며, 올해부터 4년간 한해 5명의 학생에게 장학금을 지원하는 용도로 사용된다. 김범준 대표는 국제정보올림피아드(IOI)에 한국인 최초로 참가해 고등학교 2학년이었던 1992년도 4회 대회에서 세계 1위 금메달을 수상하고 세계 대학생 프로그래밍 경진대회까지 석권한 경력을 가지고 있다. 故좌경룡 교수(1946~2021)는 국내 ‘컴퓨터 알고리즘’ 분야의 개척자이자 선구자다. 김범준 대표를 포함한 4명의 고등학생을 IOI에 참가할 수 있도록 지도했으며 총 40여 개국 중 4등이라는 우수한 성적을 거둔 것을 시작으로, 1990년대 후반부터 미국컴퓨터학회(ACM) 세계 대학생 프로그래밍 경진대회(ICPC)에 대학생들을 참가시키고 탁월한 성적을 내게 한 KAIST 전산학부 교수다. 김범준 대표 기부사 <이하 김범준 대표 기부사 전문> 저는 KAIST에서 많은 것을 받은 사람입니다. 함께 꿈꿀 수 있는 친구들을 만났고, 훌륭하신 교수님들을 만났으며, 다양한 도전과 성장을 할 수 있는 환경을 만났습니다. 후배님들도, 제가 꾸었던 꿈들을, 제가 받았던 기회를 가질 수 있기를 바라는 마음에 기부를 합니다. 지도교수님이셨던 좌경룡 교수님은, 학문적으로도 큰 업적을 남기신 뛰어난 교수님이지만, 따뜻한 눈으로 학생들을 바라보면서 이끌고 응원해 주셨던 멋진 선배님이기도 합니다. Pay It Forward 라는 말이 있죠. 좌 교수님에 대한 감사의 마음을 실천하는 가장 좋은 방법은, 그분이 보여 주셨던 마음과 행동을 이어가는 거라고 생각합니다. 후배님들이 더 큰 꿈을 꾸고 더 자유롭게 도전할 수 있도록 응원하겠습니다. 감사합니다. - 김범준 드림
2022.03.11
조회수 3062
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 10