< (왼쪽 뒤부터 시계방향으로) 송학현 박사과정, 오지훈 교수, 탄잉촨 박사후 연구원, 이범려 석사과정 >
우리 대학 연구진이 지구온난화의 주범 기체인 이산화탄소를 에틸렌이나 에탄올, 프로판올과 같이 산업적으로 고부가가치를 지닌 다탄소화합물로의 효율적 전환이 가능한 새로운 실마리를 찾아냈다.
이산화탄소 농도조절만을 통해 다탄소화합물 선택도를 크게 높인 이 기술이 실용화되면 `산업의 쌀'이라 불리는 에틸렌이나 살균, 소독용이나 바이오 연료로 사용되는 에탄올, 화장품과 치과용 로션이나 살균·살충제에 사용되는 프로판올 등을 생산하는 기존 석유화학산업의 지형에 큰 변화를 불러올 것으로 기대가 크다.
우리 대학 신소재공학과 오지훈 교수 연구팀은 이산화탄소 전기화학 환원 반응 시, 값싼 중성 전해물(전해질)에서도 다탄소화합물을 선택적으로 생성할 수 있는 공정을 개발했다.
KAIST에 따르면 오 교수 연구팀은 중성 전해물을 사용해 구리(Cu) 촉매 층 내부의 이산화탄소 농도를 조절한 결과, 기존 공정과 비교해 각각 이산화탄소 전환율은 5.9%에서 22.6%로, 다탄소화합물 선택도는 25.4%에서 약 62%까지 대폭 높아진 공정과 촉매 층 구조를 개발했다.
탄잉촨 박사 후 연구원과 이범려 석사과정이 제1 저자, 송학현 박사과정 학생이 제2 저자로 참여한 이번 연구 결과는 셀프레스(Cell press)에서 발간하는 에너지 분야 국제 학술지 `줄(Joule)' 5월호에서 편집자에게 높은 평가를 받은 특집논문(Featured article)으로 게재됐다.(논문명 : Modulating Local CO2 Concentration as a General Strategy for Enhancing C—C coupling in CO2 Electroreduction)
세계 각국은 지구온난화의 주요 원인인 이산화탄소를 적극적으로 줄이기 위해, 이를 고부가가치의 물질로 전환하는 연구가 최근 들어 활발하게 진행되고 있다. 이산화탄소를 전기화학적으로 환원 반응시키면, 수소, 일산화탄소, 메탄 등 다양한 물질이 동시에 생성되는데, 그중 2개 이상의 탄소로 구성된 다탄소화합물이 산업적으로 중요한 가치로 인해 주목을 받고 있다.
기존 연구는 탄소화합물의 선택도를 높이기 위해, 주로 알칼리성 전해물에 의존해 새로운 촉매 개발에 집중해왔다. 다만 알칼리성 전해물은 부식성과 반응성이 크기 때문에, 이를 적용한 기존 공정은 유지비용이 비싸고, 촉매 전극의 수명도 짧다는 단점이 있다.
오 교수 연구팀은 기존과 달리 역발상적 생각으로 연구를 시작했다. 구리 촉매 층 내부의 이산화탄소 농도를 오히려 감소시켰는데 성능이 떨어진다고 여겨왔던 중성 전해물에서도 기존에 보고된 연구 성과를 뛰어넘는 고성능을 보여줬다. 특히, 이번 연구에서는 중성 전해물을 사용했음에도 불구하고 사용된 전극은 놀랍게도 10시간이 넘도록 일정하게 높은 다탄소화합물의 선택도와 생성량을 유지한 것으로 나타났다.
연구팀은 또 이산화탄소의 물질이동 모사 모델의 결과를 활용해 구리 촉매 층의 구조와 이산화탄소 공급 농도, 유량을 제어한 결과, 촉매 층 내부의 이산화탄소 농도를 조절하는 데에도 성공했다. 그 결과, 내부의 농도가 최적일 때 다탄소화합물의 선택도가 높아짐을 확인할 수 있었다.
오 교수는 "연구팀이 발견한 촉매 층 내부의 이산화탄소 농도와 다탄소화합물의 선택도 간의 관계는 그동안 촉매 특성에 치우쳐있던 연구에 새로운 방향을 제시하고, 동시에 산업적 활용에서 공정 유지비용 절감은 물론 촉매 전극 수명 연장에 이바지할 것으로 기대된다ˮ 고 설명했다.
제1 저자인 탄잉촨 박사 후 연구원도 "촉매 특성을 바꾸지 않고, 단순히 이산화탄소 농도만 바꿔도 다탄소화합물의 선택도를 크게 개선할 수 있었다ˮ면서 "이번 연구에서 밝힌 이산화탄소의 새로운 전기화학적 전환 기술은 기존 석유화학산업에 새로운 변화를 가져오는 전환점이 될 것ˮ 이라고 말했다.
< 그림 1. 촉매 층의 구조, 이산화탄소 공급 농도, 이산화탄소 공급 유량에 따른 촉매 층 내부 이산화탄소 농도 제어 방법을 나타내는 모식도 및 촉매 층 내부 이산화탄소 농도와 다탄소화합물의 선택도 간의 관계를 나타내는 그래프. >
< 그림 2. 이번 연구에서 사용된 (a) 25도, (b) 50도, (c) 75도의 온도에서 적층된 다양한 두께의 구리 촉매 층의 전자 주사 현미경 단면 이미지와 그에 해당하는 에너지분산형 분광분석 이미지. 하단 이미지의 붉은 점은 구리 촉매 층을 나타낸다. (스케일 바: 5 µm) >
< 그림 3. 다양한 촉매 층 구조에서 이산화탄소 공급 농도와 유량에 따른 (a) 다탄소화합물의 선택도와 (b) 이산화탄소 전환율을 나타낸 등고선 그래프. 별이 표시된 위치가 가장 높은 선택도와 전환율을 나타낸다. (c) 본 연구의 생성량에 따른 다탄소화합물의 선택도를 보고된 다른 연구 결과와 비교한 그래프, (d) 본 연구에서 최적화된 공정에서 전극의 안정성과 기존 공정에서의 안정성을 비교하는 그래프. >
이번 연구는 한국연구재단 미래소재디스커버리사업의 지원을 받아 수행됐다.
기후변화를 포함한 환경 및 에너지 문제에 직접 맞닿아 있는 온실가스 전환 기술은 주로 G7 국가를 비롯한 OECD 회원국들을 중심으로 최근 많은 논의가 이뤄지고 있으며, 대한민국 역시 2050년까지 탄소중립 글로벌 스탠다드 달성을 위해 산・학・연 및 민・관 협력 연구를 활발히 촉진하고 있다. 대기 중의 온실가스를 제거함과 동시에, 미래 청정 연료로 주목받는 메탄올 합성에 필요한 이산화탄소 분해 반응은 탄소중립 달성을 위한 산업계 패러다임 전환 대응에 필요한 핵심 기술이지만, 이산화탄소 분자가 화학적으로 매우 안정된 탓에 공업적으로 유용한 화학 물질로의 전환은 여전히 난제로 여겨진다. 우리 대학 화학과 박정영 교수 연구팀이 광주과학기술원 (GIST) 물리·광과학과 문봉진 교수 연구팀과 공동연구를 통해 초미세 계단형 구리(Cu) 촉매 표면이 이산화탄소(CO2) 분자를 보다 효과적으로 분해할 수 있음을 입증했다고 26일 밝혔다. 포집된 온실가스의 전환은 일반적으로
2023-06-263D프린팅으로 제작이 어려웠던 금속복합재 분말을 개발해 우주항공, 자동차, 국방 등의 첨단소재 기술로 적용할 수 있게 되어 화제다. 기존 기술로 금속복합재용 분말을 제조할 때는 투입된 분말들이 파쇄되어 가치가 떨어지는 불규칙한 형상의 분말이 생산됐다. 하지만 연구팀이 개발한 기술은 세라믹, 고분자, 금속과 관계없이 이식할 수 있어, 다양한 분말 기반 첨단 산업(금속 3D 프린팅, 우주항공, 모빌리티용 첨단합금)에 모두 적용이 가능한 혁신적 분말 제조 기술이다. 우리 대학 원자력및양자공학과 류호진 교수 연구팀이 신소재 합금 및 금속복합재 개발에 필요한 고부가가치 분말을 생산하는 분말 표면 제어 및 강화 이식 기술*을 개발했다고 밝혔다. 이번 연구에는 류호진 교수 연구팀과 한국원자력연구원(김재준 박사), 한국재료연구원(김정환 박사, 이동현 박사)이 참여했다. ※ 분말 표면 제어 및 강화 이식 기술: SMART – Surface Modification And Rein
2023-06-13전 세계적으로 기후변화 문제가 심각해짐에 따라 이를 기후 위기로 인식하고 이에 대응하는 적극적인 관심과 노력이 요구되고 있다. 그중 이산화탄소를 활용해 재자원화하는 여러 방법 중에서 전기화학적 이산화탄소 전환 기술은 전기에너지를 이용해 이산화탄소를 유용한 화학물질로 전환할 수 있는 기술이다. 이는 설비 운용이 용이하고, 태양 전지나 풍력에 의해 생산된 재생 가능한 전기에너지를 이용할 수 있으므로 온실가스 감축 및 탄소 중립 달성에 기여하는 친환경 기술로 많은 관심을 받고 있다. 우리 대학 생명화학공학과 이현주 교수와 이상엽 특훈교수 공동연구팀이 전기화학적 이산화탄소 전환과 미생물 기반의 바이오 전환을 연계한 하이브리드 시스템을 개발해 이산화탄소로부터 높은 효율로 바이오 플라스틱을 생산하는 기술 개발에 성공했다고 30일 밝혔다. 유사한 시스템 대비 20배 이상의 세계 최고 생산성을 보여준 해당 연구 결과는 국제 학술지인 ‘미국국립과학원회보(PNAS)'에 3월 27일 字
2023-03-30우리 대학 생명과학과 조병관 교수 연구팀이 산업 부생가스 등으로 대량 발생하는 고농도의 일산화탄소를 고부가가치 바이오케미칼로 전환할 수 있는 생체촉매 기반 C1 바이오 리파이너리 기술*을 개발했다고 14일 밝혔다. * 제철 공정과 같은 산업공정에서 발생하는 부생가스, 합성가스는 다량의 일산화탄소, 이산화탄소 등의 탄소 1개로 이루어진 C1 가스로 구성되어 있음. 이러한 C1 가스를 미생물과 같은 생체촉매를 활용하여 다양한 화학물질로 전환하는 공정을 C1 가스 바이오 리파이너리(bio-refinery) 기술이라고 함. 최근 탄소 포집 및 전환과 같은 기술들에 대한 산업계의 요구가 커지는 가운데, 미생물을 활용한 친환경 생체촉매 기술이 크게 성장하고 있다. 조병관 교수 연구팀은 아세토젠 미생물을 생체촉매로 활용한 C1 가스 바이오 리파이너리 기술을 개발했다. 이 미생물들은 혐기성 미생물들로 우드-융달 대사회로라는 매우 독특한 대사회로를 이용하여 C1 가스로부터 아세트산을
2022-07-15우리 대학 생명화학공학과 이재우 교수 연구팀이 페로브스카이트* 상에서 발생하는 이산화탄소의 열화학적 환원반응의 기작을 규명하고, 반응을 최적화하기 위한 요인을 다변화하는 데에 성공했다고 13일 밝혔다. ☞ 페로브스카이트: ABO3 (A = 란탄족, B = 전이금속)의 분자식을 가진 입방체 구조의 산화금속으로 차세대 태양전지에 응용되는 물질로 알려져 있다. 이 교수 연구팀은 이산화탄소의 환원반응 성능을 예측하기 위해, 기존에 주로 활용돼왔던 산소 공공 형성 에너지 계산 외에도 수소 흡착에너지, 이온 전도도 및 이산화탄소의 흡착상태를 분석해 성능 예측의 정확도를 더욱 높일 수 있다는 것을 확인했다. 연구팀이 다변화에 성공한 요인을 통해, 탄소중립 실현을 개발될 다분야의 이산화탄소 전환 및 환원 촉매의 성능을 더욱 정확하게 예측할 수 있을 것으로 기대된다. 우리 대학 생명화학공학과 임현석 박사와 김이겸 박사과정이 공동 제1 저자로 참여하고 영남대학교 화학공학부 강도형 교수 연
2021-10-13