< (왼쪽부터)전산학부 조성호 교수, 김민 박사과정 >
우리 대학 전산학부 조성호 교수 연구팀이 서울대 기계공학과 고승환 교수 연구팀과 협력 연구를 통해 딥러닝 기술을 센서와 결합, 최소한의 데이터로 인체 움직임을 정확하게 측정 가능한 유연한 `피부 형 센서'를 개발했다.
공동연구팀이 개발한 피부 형 센서에는 인체의 움직임에 의해 발생하는 복합적 신호를 피부에 부착한 최소한의 센서로 정밀하게 측정하고, 이를 딥러닝 기술로 분리, 분석하는 기술이 적용됐다.
이번 연구에는 김민(우리 대학), 김권규(서울대), 하인호(서울대) 박사과정이 공동 제1 저자로 참여했으며 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 5월 1일 字 온라인판에 게재됐다. (논문명 : A deep-learned skin decoding the epicentral human motions).
사람의 움직임 측정 방법 중 가장 널리 쓰이는 방식인 모션 캡처 카메라를 사용하는 방식은 카메라가 설치된 공간에서만 움직임 측정이 가능해 장소적 제약을 받아왔다. 반면 웨어러블 장비를 사용할 경우 장소제약 없이 사용자의 상태 변화를 측정할 수 있어, 다양한 환경에서 사람의 상태를 전달할 수 있다.
다만 기존 웨어러블 기기들은 측정 부위에 직접 센서를 부착해 측정이 이뤄지기 때문에 측정 부위, 즉 관절이 늘어나면 더 많은 센서가 수십 개에서 많게는 수백 개까지 요구된다는 단점이 있다.
공동연구팀이 개발한 피부 형 센서는 `크랙' 에 기반한 고(高) 민감 센서로, 인체의 움직임이 발생하는 근원지에서 먼 위치에 부착해서 간접적으로도 인체의 움직임을 측정할 수 있다. `크랙' 이란 나노 입자에 균열이 생긴다는 뜻인데, 연구팀은 이 균열로 인해 발생하는 센서값을 변화시켜 미세한 손목 움직임 변화까지 측정할 수 있다고 설명했다.
연구팀은 또 딥러닝 모델을 사용, 센서의 시계열 신호를 분석해 손목에 부착된 단 하나의 센서 신호로 여러 가지 손가락 관절 움직임을 측정할 수 있게 했다. 사용자별 신호 차이를 교정하고, 데이터 수집을 최소화하기 위해서는 전이학습(Transfer Learning)을 통해 기존 학습된 지식을 전달했다. 이로써 적은 양의 데이터와 적은 학습 시간으로 모델을 학습하는 시스템을 완성하는 데 성공했다.
< 그림 1. 딥러닝된 피부형 센서 구성 >
< 그림 2. 전이학습 기반 RSL 학습 시스템 >
우리 대학 전산학부 조성호 교수는 "이번 연구는 딥러닝 기술을 활용해 실제 환경에서 더욱 효과적으로 사람의 실시간 정보를 획득하는 방법을 제시했다는 점에서 의미가 있다ˮ며 "이 측정 방법을 적용하면 웨어러블 증강현실 기술의 보편화 시대는 더욱 빨리 다가올 것ˮ 이라고 예상했다.
한편, 이번 연구는 한국연구재단 기초연구사업(선도 연구센터 지원사업 ERC)과 기초연구사업 (중견연구자)의 지원을 받아 수행됐다.
< 피부형 센서 패치로 손가락 움직임 측정 모습 >
우리 대학 전산학부 안성진 교수 연구팀이 세계적인 인공지능 권위자인 캐나다의 요슈아 벤지오(Yoshua Bengio) 교수와 함께 ‘KAIST-밀라(MILA) 프리프론탈 인공지능 연구센터’를 KAIST에 7월 1일부로 설립했다고 4일 밝혔다. 이 사업은 과학기술정보통신부와 한국연구재단이 지원하는 ‘2024년도 해외우수연구기관 협력허브구축사업’의 일환으로, 안성진 교수 연구팀은 2024년 7월부터 2028년 12월까지 총 27억 원의 지원을 받게 된다. 이 센터는 차세대 인공지능 기술 개발을 위한 국제공동연구의 중심지로서 역할을 하게 될 예정이다. 요슈아 벤지오 교수는 딥러닝 분야의 창시자 중 한 명으로, 현대 인공지능 연구에 지대한 영향을 미친 인물이다. 그의 연구는 현재의 딥러닝 기술을 탄생시키고 발전시키는 데 중요한 역할을 했다. KAIST 안성진 교수팀과의 이번 협력은 요슈아 벤지오 교수의 몬트리올 학습 알고리즘 연구
2024-09-04자율주행에서 물체의 모양과 위치를 정확히 추적할 수 있는 기술이 필요하다. 또한, 생물학적 세포, 박막, 미세구조 및 기타 유사한 물질들을 화학 염색 없이도 상세하고 높은 대비로 관찰할 수 있는 기술은 의료 및 산업 현장에서 중요하다. 하지만 기존 기술들은 간섭계를 사용하기 때문에 크고 복잡한 장비가 필요하고 주변 환경에 민감해 실제 현장에서의 활용이 제한됐다. 우리 연구진이 이러한 한계를 극복하고 다양한 응용 분야에서 활용할 수 있는 신개념 빛 측정 기술을 개발해서 화제다. 우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 세계 최초로 메타표면*으로 성능이 대폭 향상된 파면 센서를 이용해 복잡한 물체의 단일 측정 위상 이미징 기술을 개발했다고 20일 밝혔다. *메타표면: 나노미터에서 마이크로미터 스케일의 기하학적 구조를 가지는 나노 구조체들로 이뤄진 평면으로, 각 나노 구조체의 모양에 따라 매우 미세한 규모에서 전자기파의 전파 경로, 위상, 편광, 진폭 등을 제어할 수 있음
2024-08-20우리 연구진이 기존까지 전무했던 녹색빛을 가스 센서에 조사하여 상온에서 최고 수준의 이산화질소 감지 성능을 보이는 것을 확인했다. 이를 통해 녹색광이 50% 이상 포함된 실내조명을 통해서도 작동이 가능한 초고감도 상온 가스 센서를 개발했다. 우리 대학 신소재공학과 김일두 교수 연구팀이 가시광을 활용해 상온에서도 초고감도로 이산화질소(NO2)를 감지할 수 있는 가스 센서를 개발했다고 10일 밝혔다. 금속산화물 반도체 기반 저항 변화식 가스 센서는 가스 반응을 위해 300 oC 이상 가열이 필요해 상온 측정에 한계가 있었다. 이를 극복하기 위한 대안으로 최근 금속산화물 기반 광활성 방식 가스 센서가 크게 주목받고 있으나, 기존 연구는 인체에 유해한 자외선 내지는 근자외선 영역의 빛을 활용하는 데에 그쳤다. 김일두 교수 연구팀은 이를 녹색 빛을 포함한 가시광 영역으로 확대해 범용성을 크게 높였으며, 녹색광을 조사했을 때 이산화질소 감지 반응성이 기존 대비 52배로 증가하였다
2024-06-10우리 대학이 서울시 · 서울시복지재단과 'AI안부확인서비스 데이터 활용연구를 위한 업무협약'을 29일 서면 교환 방식으로 체결한다. 이번 업무협약은 서울시가 2022년 10월부터 제공해 온 인공지능을 활용한 안부 확인 서비스를 고도화하기 위해 추진된다. 안부 대상자의 심리상태와 고립 위험 신호를 탐지할 수 있는 대화형 'AI안부확인서비스'를 개발해 고립가구 돌봄서비스에 활용하는 것이 목표다. 우리 대학은 이번 연구를 위해 인공지능-사회복지-HCI(인간컴퓨터상호작용)를 아우르는 융합연구팀을 구성했다. 차미영 전산학부 교수와 최문정 과학기술정책대학원 교수 및 IBS 수리 및 계산과학 연구단 데이터사이언스 그룹 진효진 박사가 참여한다. 연구팀은 서울시가 'AI안부확인서비스'를 운영하며 축적해 온 대화 데이터를 제공받아 ▴고립 위험 대상자를 찾아낼 수 있는 지표 개발 ▴고립감 해소 및 심리적 안정을 위한 시나리오 개발과 이를 반영한 대화형 인공지능 개발 ▴고령자 및
2024-03-29우리 대학 연구팀이 당뇨병 등 상처 부위의 시공간 온도 변화 및 열전달 특성 추적을 통해 상처 치유 과정을 효과적으로 모니터링할 수 있는 무선 시스템을 개발했다. 전기및전자공학부 권경하 교수팀이 중앙대학교 류한준 교수와 상처 치유 과정을 실시간으로 추적해 적절한 치료를 제공할 수 있게 해주는 디지털 헬스케어 기술을 개발했다고 5일 밝혔다. 피부는 유해 물질로부터 인체를 보호하는 장벽 기능을 한다. 피부 손상은 집중 치료가 필요한 환자들에게 감염과 관련된 심각한 건강 위험을 초래할 수 있다. 특히 당뇨병 환자의 경우, 정상적인 혈액 순환과 상처 치유 과정에 문제가 생겨 만성 상처가 쉽게 발생한다. 이러한 만성 상처의 재생을 위해 미국에서만 매년 수백억 달러의 의료 비용이 지출되고 있다. 상처 치유를 촉진하는 다양한 방법이 있지만, 환자별 상처 상태에 따라 맞춤 관리가 필요하다. 이에 연구팀은 상처 부위와 주변 건강한 피부 사이의 온도 차이를 활용해 상처 내 발
2024-03-05