
< (왼쪽부터) 기계공학과 김지태 교수, 박인규 교수 >
우리 대학 기계공학과 김지태 교수, 박인규 교수 공동연구팀은 3차원 프린팅 기술과 인공지능(AI)을 융합해 98%에 달하는 가스 판별 정확도를 지닌 나노선 기반 전자코 마이크로 칩 개발에 성공했다.
금속산화물 반도체 나노선은 극미량의 가스를 검출할 수 있는 유망한 소재로 알려져 있다. 다양한 종류의 가스의 농도와 성분을 함께 읽어내기 위해서는 서로 다른 특성의 여러 나노선들을 하나의 마이크로 칩에 심어야 한다. 하지만 기존 제조 방식으로는 매우 어려웠다.
연구팀은 독자적으로 개발한 초정밀 나노 3차원 프린터를 활용해 24종류의 서로 다른 반도체 나노선을 매우 작은 하나의 마이크로 칩 위에 제작하였다. 고성능 전자코 모델 구현을 위해서는 다양한 센서를 동시에 활용하는 스케일업이 중요한데, 본 공정은 나노선에 금속과 금속산화물의 양을 원하는 대로 조성하고 정밀하게 제어함으로써, 수십 종의 서로 다른 소재를 손쉽게 제작할 수 있는 획기적인 기술이다.

< 연구 그림 >
가스에 반응하는 24개 나노선의 각기 다른 전기 신호 패턴을 조합해 이를 컨볼루션 신경망(Convolutional Neural Network, CNN)' AI 모델에 학습시켜 가스를 인식하고 분류하였다. 그 결과 메탄 (CH₄), 암모니아(NH₃), 에탄올(CH₃CH₂OH), 일산화탄소(CO), 황화수소(H₂S) 등 5가지 표적 가스 판별 정확도를 98% 까지 향상시켰다. 본 연구를 통해 개발된 3D 프린팅의 유연성과 AI의 지능이 결합된 새로운 제조 플랫폼은 환경 모니터링, 의료 진단, 산업 안전, 스마트홈 등 다양한 분야에서 맞춤형 고성능 가스 센서 시스템을 구현하는 데 핵심적인 기반 기술이 될 것으로 기대된다.
이번 연구 결과는 국제 권위 학술지 『Advanced Science』 (IF: 14.1) 8월 26일자 온라인판에 게재됐다. 이번 과학기술정보통신부 우수신진연구, 국가전략기술 소재개발사업, 나노 및 소재기술개발사업의 지원으로 수행됐다.
“Universal 3D-Printing of Suspended Metal Oxide Nanowire Arrays on MEMS for AI-Optimized Combinatorial Gas Fingerprinting”
기존의 3차원(3D) 신경세포 배양 기술은 뇌의 복잡한 다층 구조를 정밀하게 구현하기 어렵고, 구조와 기능을 동시에 분석할 수 있는 플랫폼이 부족해 뇌 연구에 제약이 있었다. 우리 연구진이 뇌처럼 층을 이루는 신경세포 구조를 3D 프린팅 기술로 구현하고, 그 안에서 신경세포의 활동까지 정밀하게 측정할 수 있는 통합 플랫폼 개발에 성공했다. 우리 대학 바이오및뇌공학과 박제균·남윤기 교수 공동연구팀이 뇌 조직과 유사한 기계적 특성을 가진 저점도 천연 하이드로겔을 이용해 고해상도 3D 다층 신경세포 네트워크를 제작하고, 구조적·기능적 연결성을 동시에 분석할 수 있는 통합 플랫폼을 개발했다고 16일 밝혔다. 기존 바이오프린팅 기술은 구조적 안정성을 위해 고점도 바이오잉크를 사용하지만, 이는 신경세포의 증식과 신경돌기 성장을 제한하고, 반대로 신경세포 친화적인 저점도 하이드로겔은 정밀한 패턴 형성이 어려워 구조적 안정성과 생물학적 기능 사이의 근본적인 상충
2025-07-16기존 군 훈련은 정형화된 방식에 의존하는 경우가 많아 전투원 개인의 특성이나 전투 상황에 맞춘 최적화된 훈련 제공에 한계가 있었다. 이에 우리 연구진이 전자섬유 플랫폼을 개발해 전투원 개개인의 특성과 전투 국면을 반영할 수 있는 원천기술을 확보했다. 이 기술은 전장에서 활용할 수 있을 만큼 튼튼함이 입증됐고, 많은 병력에게 보급할 수 있을 정도의 경제성도 갖췄다. 우리 대학 신소재공학과 스티브 박 교수 연구팀이 섬유 위에 전자회로를 `그려 넣는' 혁신적인 기술을 통해 유연하고 착용 가능한 전자 섬유(E-textile) 플랫폼을 개발했다고 25일 밝혔다. 연구팀이 개발한 웨어러블 전자 섬유 플랫폼은 3D 프린팅 기술과 신소재공학적 설계를 결합해 유연하면서도 내구성이 뛰어난 센서와 전극을 섬유에 직접 인쇄했다. 이를 통해 전투원 개개인의 정밀한 움직임 및 인체 데이터를 수집하고, 이를 기반으로 맞춤형 훈련 모델을 제시할 수 있게 됐다. 기존 전자 섬유 제작 방식은 복잡하거
2025-06-25우리 대학 기계공학과 이승철 교수 연구팀이 POSTECH 신소재공학과 김형섭 교수 연구팀과 함께 인공지능 기술을 활용해 Ti-6Al-4V 합금의 강도-연성 딜레마를 극복하고 고강도·고연신 금속 제품을 생산해 내는 데 성공했다고 밝혔다. 연구팀이 개발한 인공지능은 3D프린팅 공정변수에 따른 기계적 물성을 정확히 예측하는 동시에 예측의 불확실성 정보를 제공하며 이 두 정보를 활용해 실제 3D프린팅을 진행할 가치가 높은 공정변수를 추천한다. 3D프린팅 기술 중에서도 레이저 분말 베드 융합은 뛰어난 강도 및 생체 적합성으로 유명한 Ti-6Al-4V 합금을 제조하기 위한 혁신적인 기술이다. 그러나 3D프린팅으로 제작된 이 합금은 강도와 연성을 동시에 높이기 어렵다는 문제점이 있다. 3D프린팅의 공정변수와 열처리 조건을 조절해 이를 해결하고자 하는 연구들이 있었지만, 방대한 공정변수 조합들을 실험 및 시뮬레이션으로 탐색하기에는 한계가 있었다. 연구팀이 개발한 능동 학습(Ac
2025-02-21최근 자동차, 항공, 모빌리티 등 첨단 산업에서는 경량화와 동시에 우수한 기계적 성능을 갖춘 소재에 대한 수요가 증가하고 있다. 국제 공동연구진이 나노 구조를 활용한 초경량 고강도 소재를 개발하여 향후 맞춤형 설계를 통해 다양한 산업에 응용 가능성을 제시했다. 우리 대학 기계공학과 유승화 교수 연구팀이 토론토 대학(Univ. of Toronto) 토빈 필레터 교수(Prof. Tobin Filleter) 연구팀과 협력해, 높은 강성과 강도를 유지하면서도 경량성을 극대화한 나노 격자 구조를 개발했다고 18일 밝혔다. 연구팀은 이번 연구에서 격자 구조의 보(beam) 형상을 최적화해 경량성을 유지하면서도 강성과 강도를 극대화하는 방안을 모색했다. 특히, 다목적 베이지안 최적화(Multi-objective Bayesian Optimization) 알고리즘*을 활용해 인장 및 전단 강성 향상과 무게 감소를 동시에 고려하는 최적 설계를 수행했다. 기존 방식보다 훨씬 적은 데이터(약
2025-02-18실시간으로 심박수를 측정할 수 있는 스마트 워치, 심장 박동수를 조절하는 페이스메이커 등 생체신호를 지속적으로 측정해 다양한 병을 진단하거나 치료할 수 있는 전자소자인 생체전자소자에 관한 연구가 활발히 진행되고 있다. KAIST 연구진이 생체조직 접촉 시 손상을 최소화하고 3D 마이크로니들 구조로 조직표면부터 심부까지 측정할 수 있는 전도성 하이드로젤 소재를 개발해 화제다. 우리 대학 신소재공학과 스티브 박 교수, 바이오및뇌공학과 박성준 교수 공동연구팀이 3D 프린팅을 통해 다양한 형태의 생체전자소자를 쉽고 빠르게 제작할 수 있는 전도성 고분자 기반 전극 물질을 개발했다고 7일 밝혔다. 이번 연구를 통해 기존 2D 전극 패터닝 기술로 접근하기 어려웠던 한계점을 극복해, 원하는 위치 및 심부 영역의 뇌 신경세포를 자극 및 측정할 수 있어, 뇌의 심부 영역에서 뇌의 활성화 원리를 정확하게 해석할 수 있을 것으로 기대된다. 또한 3D 프린팅을 통해 이 기술은 피부에 부착하는 헬스
2024-08-07