
< (왼쪽부터) 바이오및뇌공학과 윤동조 박사, 박제균 교수, (우측 상단) 남윤기 교수, 김수지 박사 >
기존의 3차원(3D) 신경세포 배양 기술은 뇌의 복잡한 다층 구조를 정밀하게 구현하기 어렵고, 구조와 기능을 동시에 분석할 수 있는 플랫폼이 부족해 뇌 연구에 제약이 있었다. 우리 연구진이 뇌처럼 층을 이루는 신경세포 구조를 3D 프린팅 기술로 구현하고, 그 안에서 신경세포의 활동까지 정밀하게 측정할 수 있는 통합 플랫폼 개발에 성공했다.
우리 대학 바이오및뇌공학과 박제균·남윤기 교수 공동연구팀이 뇌 조직과 유사한 기계적 특성을 가진 저점도 천연 하이드로겔을 이용해 고해상도 3D 다층 신경세포 네트워크를 제작하고, 구조적·기능적 연결성을 동시에 분석할 수 있는 통합 플랫폼을 개발했다고 16일 밝혔다.
기존 바이오프린팅 기술은 구조적 안정성을 위해 고점도 바이오잉크를 사용하지만, 이는 신경세포의 증식과 신경돌기 성장을 제한하고, 반대로 신경세포 친화적인 저점도 하이드로겔은 정밀한 패턴 형성이 어려워 구조적 안정성과 생물학적 기능 사이의 근본적인 상충 관계가 있었다.
연구팀은 묽은 젤로도 정밀한 뇌 구조를 만들고, 층마다 정확히 정렬하며, 신경세포의 활동까지 동시에 관찰할 수 있는 3대 핵심기술을 결합해 정교하고 안정적인 뇌 모사 플랫폼을 완성했다.
3대 핵심기술은 ▲ 묽은 젤(하이드로겔)이 흐르지 않도록 스테인리스 철망(마이크로메시) 위에 딱 붙게 만들어 주는‘모세관 고정 효과’ 기술로 기존보다 6배 더 정밀하게 (해상도 500μm 이하) 뇌 구조를 재현했고 ▲ 프린팅된 층들이 삐뚤어지지 않고 정확히 쌓이도록 맞춰주는 원통형 설계인 ‘3D 프린팅 정렬기’로 다층 구조체의 정밀한 조립과 미세 전극 칩과의 안정적 결합을 보장하였고 ▲ 아래쪽은 전기신호를 측정하고, 위쪽은 빛(칼슘 이미징)으로 동시에 세포 활동을 관찰하는 ‘이중 모드 분석 시스템’기술로 층간 연결이 실제로 작동하는지를 여러 방식으로 동시에 확인할 수 있다.

< 그림 1. 뇌 구조 모방 신경 네트워크 모델 구축과 기능적 측정 기술이 통합된 플랫폼 >
연구팀은 뇌와 유사한 탄성 특성을 지닌 피브린 하이드로겔을 이용해 3층으로 구성된 미니 뇌 구조를 3D 프린팅으로 구현하고, 그 안에서 실제 신경세포들이 신호를 주고받는 과정을 실험을 통해 입증했다.
위층과 아래층에는 대뇌 신경세포를 배치하고, 가운데층은 비어 있지만, 신경세포들이 가운데를 뚫고 지나가며 연결되도록 설계했다. 아래층에는 미세 센서(전극칩)를 달아 전기신호를 측정하고, 위층은 빛(칼슘 이미징)으로 세포 활동을 관찰한 결과, 전기 자극을 줬을 때 위아래층 신경세포가 동시에 반응했고, 신경 연결을 차단하는 약물(시냅스 차단제)을 넣었더니 반응이 줄어들어 신경세포들이 진짜로 연결돼서 신호를 주고받고 있다는 것을 입증했다.
바이오및뇌공학과 박제균 교수는 “이번 연구는 뇌 조직의 복잡한 다층 구조와 기능을 동시에 재현할 수 있는 통합 플랫폼의 공동개발 성과”임을 강조하며, “기존 기술로 14일 이상은 신호 측정이 불가했던 것에 비해 27일 이상 안정적인 미세 전극 칩 인터페이스를 유지하면서 구조-기능 관계를 실시간으로 분석할 수 있어, 향후 신경질환 모델링, 뇌 기능 연구, 신경독성 평가 및 신경 보호 약물 스크리닝 등 다양한 뇌 연구 분야에 활용할 수 있을 것”이라고 말했다.

< 그림 2. 적층형 바이오프린팅 기술과 미세전극 칩의 통합 과정 >
바이오및뇌공학과 김수지 박사와 윤동조 박사가 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘바이오센서스 앤 바이오일렉트로닉스(Biosensors and Bioelectronics)’에 2025년 6월 11일 자로 온라인판에 게재됐다.
※논문명: Hybrid biofabrication of multilayered 3D neuronal networks with structural and functional interlayer connectivity
※DOI: https://doi.org/10.1016/j.bios.2025.117688
한편, 이번 연구는 한국연구재단 글로벌 기초연구실지원사업, 중견연구 및 바이오·의료기술개발사업의 지원을 받아 수행됐다.
우리 대학 바이오및뇌공학과 박성홍 교수 연구실(연구실명: 자기공명영상 연구실, Magnetic Resonance Imaging Laboratory)이 MICCAI 국제학회의 TopBrain 뇌 혈관 Segmentation Challenge에서 1등상을 수상했다. MICCAI의 TopBrain Challenge는 뇌혈관을 가장 정확히 구획화(Segmentation)하는 딥러닝 네트워크 개발을 놓고 매년 전세계적으로 경쟁하는 대회로서 올해로 3회째를 맞고 있다. 이전 두 대회는 TopCoW라는 이름으로 대뇌동맥고리(circle of willis) 영역 구획화로만 치러졌고, 올해 처음 TopBrain이라는 이름으로 뇌 전체 혈관 구획화로 확장되었다. MICCAI (Medical Image Computing and Computer Assisted Intervention)는 매년 전세계 의료영상연구자들의 모임으로써 올해는 대전 convention center (DCC)에서 전세계 3천명
2025-10-13우리 대학은 의과학대학원 이정호 교수의 교원 창업기업인 소바젠(각자대표 박철원·이정호)이 난치성 뇌전증을 치료하기 위한 혁신적인 RNA 신약 후보를 개발해, 총 7,500억 원 규모의 글로벌 기술 수출에 성공했다고 9일 밝혔다. 이번 성과는 KAIST의 기초 의과학 연구에서 출발한 혁신적 발견이 실제 신약 개발과 세계 시장 진출로 이어진 대표적 사례로 주목받고 있다. 이정호 교수 연구팀은 난치성 뇌전증과 악성 뇌종양 같은 치명적 뇌 질환의 원인이‘뇌 줄기세포에서 생긴 후천적 돌연변이(뇌 체성 돌연변이, Brain Somatic Mutation)’인 사실을 세계 최초로 규명해 네이처(Nature)와 네이처 메디슨(Nature Medicine) 등에 2015년, 2018년에 발표한 바 있다. 이후 신약 개발 전문가인 소바젠의 박철원 대표와 함께, 뇌전증의 원인 돌연변이 유전자인 MTOR를 직접 겨냥할 수 있는 RNA 신약(ASO, Antisen
2025-10-10체외에서 배양한 뇌 신경조직은 뇌 연구를 단순화한 실험 모델로 널리 활용돼 왔으나, 기존 장치는 반도체 공정 기반으로 제작돼 형태 변형과 입체(3D) 구조 구현에 한계가 있었다. KAIST 연구팀은 발상의 전환으로 3D 프린터로 빈 통로 구조를 먼저 제작한 뒤, 그 통로를 전도성 잉크가 모세관 현상으로 저절로 채우게 해 전극·배선을 만드는 맞춤형 3D 뇌 신경 칩을 완성했다. 이번 성과는 뇌과학·뇌공학 연구 플랫폼의 설계 자유도와 활용성을 크게 높일 것으로 기대된다. 우리 대학은 바이오및뇌공학과 남윤기 교수 연구팀은 기존 반도체 공정 기반 제작 방식의 한계를 극복하고 ‘3D 미세전극 칩(3차원 공간에 배치된 다수의 미세전극을 통해 신경세포의 전기적 활동을 측정하고 자극할 수 있는 신경 인터페이스)’을 다양한 형태의 맞춤형 체외 배양칩 형태로 정밀하게 제작할 수 있는 플랫폼 기술을 개발하는데 성공했다고 25일 밝혔다. 기존 3D
2025-09-25사람마다 가지고 있는 유전자 차이가 어릴 때 뇌가 자라나는 과정에서는 크게 문제가 되지 않지만, 나이가 들어서 치매 등 뇌 질환이 생길 때는 왜 어떤 사람이 더 잘 걸리는지 오랫동안 수수께끼였다. 국내 연구진이 최근 뇌 속 별아교세포가 면역 반응을 켜고 끄는 스위치를 지니고 있으며, 이 스위치를 조절하는 핵심유전자를 알아내고 성인이 된 후 뇌 질환에 대한 개인의 취약성을 결정한다는 점을 세계 최초로 밝혀냈다. 향후 알츠하이머병의 퇴행성뇌질환을 포함한 다양한 뇌 면역 반응의 원인 규명과 치료 전략의 중요한 단서를 제공했다. 우리 대학은 생명과학과 정인경 교수와 기초과학연구원(원장 노도영, IBS) 혈관 연구단 정원석 부연구단장(겸 KAIST 생명과학과 교수) 공동연구팀이 별아교세포(astrocyte) 발달 과정에서 특정 유전자가 성인기 뇌 면역 반응 조절에 핵심 역할을 한다는 사실을 세계 최초로 규명했다고 24일 밝혔다. 연구팀은 쥐 모델을 활용해 뇌·척수에 차
2025-09-24모하마드 알리, 마이클 J. 폭스 등 세계적으로 잘 알려진 인물들이 파킨슨병으로 오랜 시간 투병해 왔다. 이 병은 떨림, 강직, 서동, 자세 불안정 등 복합적인 운동 증상이 나타나지만, 기존 검사법으로는 발병 초기 변화를 민감하게 포착하기 어렵고, 뇌 신호 조절을 겨냥한 약물 역시 임상에서 효과가 제한적이었다. 최근 한국 연구진이 AI와 광유전학을 융합한 기술을 통해 파킨슨병의 정밀 진단과 치료 평가 도구로 활용 가능성을 입증하고, 차세대 맞춤형 치료제 개발 전략을 제시하는 데 성공했다. 우리 대학 생명과학과 허원도 석좌교수 연구팀이 뇌인지과학과 김대수 교수(생명과학기술대학 학장) 연구팀, 기초과학연구원(IBS 원장 노도영) 이창준 단장(인지 및 사회성 연구단) 연구팀과 함께 인공지능(AI) 분석과 광유전학(optogenetics)을 결합해 파킨슨병 동물 모델에서 조기·정밀 진단과 치료 가능성을 동시에 입증하는 전임상 연구 성과를 거두었다고 22일 밝혔다. 연
2025-09-22