< 사진 1. 왼쪽부터 생명화학공학과 김지한 교수, 이유한 박사, 박준길 박사 >
최근 생성형 인공지능은 텍스트, 이미지, 비디오 생성 등 다양한 분야에서 널리 사용되고 있지만, 소재 개발 분야에서는 아직 충분히 활용되지 못하고 있다. 이러한 상황에서 KAIST 연구진이 구조적 복잡성을 지닌 다공성 소재를 생성하는 인공지능 모델을 개발하여, 사용자가 원하는 특성의 소재를 선택적으로 생성할 수 있게 되었다.
우리 대학 생명화학공학과 김지한 교수 연구팀이 원하는 물성을 가진 금속 유기 골격체(Metal-Organic Frameworks, MOF)를 생성하는 인공지능 모델을 개발했다고 23일 밝혔다.
김지한 교수 연구팀이 개발한 생성형 인공지능 모델인 모퓨전(MOFFUSION)은 금속 유기 골격체의 구조를 보다 효율적으로 표현하기 위해, 이들의 공극 구조를 3차원 모델링 기법을 활용해 나타내는 혁신적인 접근 방식을 채택했다. 이 기법을 통해 기존 모델들에서 보고된 낮은 구조 생성 효율을 81.7%로 크게 향상시켰다.
< 그림 1. MOFFUSION 구조 모식도. 잠재 확산 모델 아키텍처를 채용하였으며, 부호화 거리 함수를 활용하여 구조를 효과적으로 표현함. 숫자, 카테고리, 텍스트 등의 다양한 형식의 데이터를 활용하여 생성 과정을 제어할 수 있음. >
또한, 모퓨전은 생성 과정에서 사용자가 원하는 특성을 다양한 형태로 표현하여 인공지능 모델에 입력할 수 있는 특징이 있다. 연구진은 사용자가 원하는 물성을 숫자, 카테고리, 텍스트 등 다양한 형태로 입력할 수 있으며, 데이터 형태와 관계없이 높은 생성 성능을 보임을 확인했다.
예를 들어, 사용자가 생성하고자 하는 물질의 특성값을 텍스트 형태(예:“30 g/L의 수소 흡착량을 갖는 구조”)로 모델에 입력하면, 모델은 이에 상응하는 물질을 선택적으로 생성한다. 이러한 특징은 소재 개발에 있어 인공지능 모델의 활용성과 편의성을 크게 개선하는 요소로 작용한다.
< 그림 2. 원하는 수소 저장 능력을 가진 금속 유기 골격체 생성 예시. 사용자가 원하는 수소 저량을 제시하면, 모델이 이에 상응하는 흡착 능력을 보이는 구조를 선택적으로 생성함 >
김지한 교수는 “원하는 물성의 소재를 개발하는 것은 소재 분야의 가장 큰 목표이며 오랜 연구 주제”라며, “연구팀이 개발한 기술은 인공지능을 활용한 다공성 소재 개발에 있어 큰 발전을 이뤘으며, 앞으로 해당 분야에서 생성형 인공지능의 도입을 촉진할 것”이라고 말했다.
우리 대학 생명화학공학과 박준길 박사, 이유한 박사가 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 지난 1월 2일 게재됐다. (논문명 : Multi-modal conditional diffusion model using signed distance functions for metal-organic frameworks generation) (https://doi.org/10.1038/s41467-024-55390-9)
< 그림 3. 원하는 공극 구조를 가진 금속 유기 골격체 생성 예시. 사용자가 원하는 공극 구조를 제시하면 모델이 이에 상응하는 공극 구조를 보이는 금속 유기 골격체를 생성함 >
한편 이번 연구는 과학기술정보통신부의 탑-티어 연구기관 간 협력 플랫폼 구축 및 공동연구 지원사업, 나노 및 소재기술 개발사업, 그리고 한국연구재단 (NRF) 중견연구자 지원사업의 지원을 받아 수행됐다.
홀추력기는 스페이스X의 스타링크(Starlink) 군집위성이나 NASA의 사이키(Psyche) 소행성 탐사선 등과 같은 여러 고난이도 우주 임무에 활용되는, 플라즈마*를 이용한 고효율 추진 장치로, 핵심적인 우주기술 중 하나다. KAIST 연구진이 인공지능 기법을 사용해 개발한 큐브위성용 홀추력기를 올해 11월에 예정된 누리호 4차 발사에서 큐브위성인 K-HERO에 탑재돼 우주에서 성능 검증을 진행할 예정이라고 밝혔다. *플라즈마(plasma)는 기체가 높은 에너지로 가열되어 전하를 띄는 이온과 전자로 분리된 물질의 네 가지 상태 중 하나로 우주 전기추진 뿐만 아니라 반도체 및 디스플레이 제조공정과 살균장치 등에 널리 활용되고 있다. 우리 대학 원자력및양자공학과 최원호 교수 연구팀이 인공위성이나 우주탐사선의 엔진인 홀 전기 추력기(홀추력기, Hall thruster)의 추력 성능을 높은 정확도로 예측할 수 있는 인공지능 기법을 개발했다고 3일 밝혔다. 홀추력기는 연비가
2025-02-03기존 컴퓨터 시스템은 데이터 처리 장치와 저장 장치가 분리돼 있어, 인공지능처럼 복잡한 데이터를 처리하기에는 효율적이지 않다. KAIST 연구팀은 우리 뇌의 정보 처리 방식과 유사한 멤리스터 기반 통합 시스템을 개발했다. 이제 원격 클라우드 서버에 의존하지 않고 의심스러운 활동을 즉시 인식하는 스마트 보안 카메라부터 건강 데이터를 실시간으로 분석할 수 있는 의료기기까지 다양한 분야에 적용될 수 있게 되었다. 우리 대학 전기및전자공학부 최신현 교수, 윤영규 교수 공동연구팀이 스스로 학습하고 오류를 수정할 수 있는 차세대 뉴로모픽 반도체 기반 초소형 컴퓨팅 칩을 개발했다고 17일 밝혔다. 연구팀이 개발한 이 컴퓨팅 칩의 특별한 점은 기존 뉴로모픽 소자에서 해결이 어려웠던 비이상적 특성에서 발생하는 오류를 스스로 학습하고 수정할 수 있다는 것이다. 예를 들어, 영상 스트림을 처리할 때 칩은 움직이는 물체를 배경에서 자동으로 분리하는 법을 학습하며 시간이 지날수록 이 작업을 더 잘 수
2025-01-22KAIST 설명가능 인공지능연구센터(센터장 최재식 교수)는 별도의 복잡한 설정이나 전문 지식 없이도 손쉽게 AI모델에 대한 설명성을 제공할 수 있는 플러그앤플레이(Plug-and-Play) 방식의 설명가능 인공지능 프레임워크를 개발해, 이를 27일 오픈소스로 공개했다. 설명가능 인공지능(Explainable AI, 이하 XAI)이란 AI 시스템의 결과에 영향을 미치는 주요 요소를 사람이 이해할 수 있는 형태로 설명해주는 제반 기술을 말한다. 최근 딥러닝 모델과 같이 내부 의사 결정 프로세스가 불투명한 블랙박스 AI 모델에 대한 의존도가 커지면서 설명가능 인공지능 분야에 대한 관심과 연구가 증가했다. 그러나 지금까지는 연구자와 기업 실무자들이 설명가능 인공지능 기술을 활용하는 것이 몇 가지 이유로 쉽지 않았다. 우선, 딥러닝 모델의 유형별로 적용 가능한 설명 알고리즘들이 서로 달라서 해당 모델에 적용할 수 있는 설명 알고리즘이 무엇인지 알기 위해서는 XAI에 대해 어느 정도 사
2024-12-27“케이던스 사의 통 큰 기부에 감사드리며, 대한민국 AI 인재 100만 명 양성이라는 원대한 목표 달성과 세상을 혁신할 반도체 연구 실현에 앞장서겠습니다”(이광형 총장) 우리 대학은 미국 소프트웨어 기업인 케이던스 디자인 시스템즈 코리아(Cadence Design Systems, 이하 케이던스)가 반도체 설계 특화 장비인 ‘케이던스 팔라디움 제트원(Cadence Palladium Z1)’*을 우리 대학에 기증한다고 밝혔다. *팔라디움 제트원: 반도체 설계 검증을 위한 초고성능 에뮬레이터 장비로, 하드웨어-소프트웨어 검증 및 디버깅 작업을 1개의 랙 당 5.76억 게이트까지 대용량으로 구현 가능함. 동 장비를 통해 SoC(System On Chip) 개발 단계에서 설계 검증을 더 원활히 수행할 수 있음. 케이던스는 1995년 반도체설계교육센터(IDEC) 설립 이후 우리 대학에 EDA(Electronic Design Automati
2024-12-17국내 최대의 설명가능 인공지능(XAI) 연구조직인 KAIST 설명가능 인공지능연구센터(센터장 KAIST 최재식 교수)는 11월 5일부터 22일까지 7회에 걸쳐 설명가능 인공지능 튜토리얼 시리즈를 성공적으로 개최했다. 이번 튜토리얼에는 학생, 연구자, 기업 실무자 등 누적인원 총 530여 명이 참여하여 설명가능 인공지능 기술에 대한 높은 관심과 수요를 보여주었다. 행사는 XAI의 주요 알고리즘부터 최신 연구 주제까지, 총 16개 세션 발표로 진행되었다. 개회 강연으로 ‘설명가능 인공지능 최신 연구 동향’에 대해 최재식 교수가 발표하였고, 이어서 KAIST 설명가능 인공지능연구센터 소속 석·박사 과정 연구원들이 △주요 XAI 알고리즘 △XAI 알고리즘의 평가기법 △거대 언어모델(LLM), 이미지 생성모델, 시계열 데이터에 대한 설명성 △ XAI Framework, 의료 도메인 적용 사례를 주제로 발표했다. 튜토리얼 마지막날에는 독일 Fraunho
2024-11-29