< (왼쪽부터) 전기및전자공학부 윤영규 교수, 한승재 석박사통합과정, 정학천 석박사통합과정, 최신현 교수 >
기존 컴퓨터 시스템은 데이터 처리 장치와 저장 장치가 분리돼 있어, 인공지능처럼 복잡한 데이터를 처리하기에는 효율적이지 않다. KAIST 연구팀은 우리 뇌의 정보 처리 방식과 유사한 멤리스터 기반 통합 시스템을 개발했다. 이제 원격 클라우드 서버에 의존하지 않고 의심스러운 활동을 즉시 인식하는 스마트 보안 카메라부터 건강 데이터를 실시간으로 분석할 수 있는 의료기기까지 다양한 분야에 적용될 수 있게 되었다.우리 대학 전기및전자공학부 최신현 교수, 윤영규 교수 공동연구팀이 스스로 학습하고 오류를 수정할 수 있는 차세대 뉴로모픽 반도체 기반 초소형 컴퓨팅 칩을 개발했다고 17일 밝혔다.
연구팀이 개발한 이 컴퓨팅 칩의 특별한 점은 기존 뉴로모픽 소자에서 해결이 어려웠던 비이상적 특성에서 발생하는 오류를 스스로 학습하고 수정할 수 있다는 것이다. 예를 들어, 영상 스트림을 처리할 때 칩은 움직이는 물체를 배경에서 자동으로 분리하는 법을 학습하며 시간이 지날수록 이 작업을 더 잘 수행하게 된다.
이러한 자가 학습 능력은 실시간 영상 처리에서 이상적인 컴퓨터 시뮬레이션에 견줄 만한 정확도를 달성하며 입증됐다. 연구팀의 주요성과는 뇌와 유사한 구성 요소의 개발을 넘어, 신뢰성과 실용성을 모두 갖춘 시스템으로 완성한 것에 있다.
< 그림 1. 높은 신뢰성을 가진 셀렉터리스(selector-less) 32×32 멤리스터 크로스바 어레이가 탑재된 컴퓨팅 칩의 주사 전자 현미경(SEM) 이미지 (왼쪽). 실시간 인공지능 구현을 위해 개발된 하드웨어 시스템 (오른쪽) >
연구팀은 세계 최초로 즉각적인 환경 변화에 적응할 수 있는 멤리스터 기반 통합 시스템을 개발하며, 기존 기술의 한계를 극복하는 혁신적인 해결책을 제시했다.
이 혁신의 핵심에는 멤리스터(memristor)*라고 불리는 차세대 반도체 소자가 있다. 이 소자의 가변 저항 특성은 신경망의 시냅스 역할을 대체할 수 있게 되고, 이를 활용해 우리 뇌세포처럼 데이터 저장 및 연산을 동시에 수행할 수 있다.
*멤리스터: 메모리(memory)와 저항(resistor)의 합성어로 두 단자 사이로 과거에 흐른 전하량과 방향에 따라 저항값이 결정되는 차세대 전기소자
연구팀은 저항 변화를 정밀하게 제어할 수 있는 고신뢰성 멤리스터를 설계하고, 자가 학습을 통해 복잡한 보정 과정을 배제한 효율적인 시스템을 개발했다. 이번 연구는 실시간 학습과 추론을 지원하는 차세대 뉴로모픽 반도체 기반 통합 시스템의 상용화 가능성을 실험적으로 검증했다는 점에서 중요한 의미를 가진다.
< 그림 2. 멤리스터 소자의 비이상적 특징이 포함된 영상의 배경 및 전경 분리 결과 (왼쪽). 본 연구진이 개발한 멤리스터 컴퓨팅 칩을 통한 기기 내 학습을 통한 실시간 영상 분리 결과 (오른쪽) >
이 기술은 일상적인 기기에서 인공지능을 사용하는 방식을 혁신하여 AI 작업 처리를 위해 원격 클라우드 서버에 의존하지 않고 로컬에서 처리할 수 있게 되어, 더 빠르고 사생활 보호가 강화되며 에너지 효율성이 높아질 것이다.
이 기술 개발을 주도한 KAIST 정학천 연구원과 한승재 연구원은 “이 시스템은 책상과 자료 캐비닛을 오가며 일하는 대신 모든 것이 손이 닿는 곳에 있는 스마트 작업 공간과 같다. 이는 모든 것이 한 곳에서 처리돼 매우 효율적인 우리 뇌의 정보 처리 방식과 유사하다”고 설명했다.
전기및전자공학부 정학천 석박통합과정생과 한승재 석박사통합과정생이 제 1저자로 연구에 참여했으며 국제 학술지 `네이처 일렉트로닉스 (Nature Electronics)'에 2025년 1월 8일 자로 온라인 게재됐다.
(논문 제목: Self-supervised video processing with self-calibration on an analogue computing platform based on a selector-less memristor array, https://doi.org/10.1038/s41928-024-01318-6)
이번 연구는 한국연구재단의 차세대지능형반도체기술개발사업, 우수신진연구사업, PIM인공지능반도체핵심기술개발사업, 정보통신기획평가원의 한국전자통신연구원연구개발지원사업의 지원을 받아 수행됐다.
홀추력기는 스페이스X의 스타링크(Starlink) 군집위성이나 NASA의 사이키(Psyche) 소행성 탐사선 등과 같은 여러 고난이도 우주 임무에 활용되는, 플라즈마*를 이용한 고효율 추진 장치로, 핵심적인 우주기술 중 하나다. KAIST 연구진이 인공지능 기법을 사용해 개발한 큐브위성용 홀추력기를 올해 11월에 예정된 누리호 4차 발사에서 큐브위성인 K-HERO에 탑재돼 우주에서 성능 검증을 진행할 예정이라고 밝혔다. *플라즈마(plasma)는 기체가 높은 에너지로 가열되어 전하를 띄는 이온과 전자로 분리된 물질의 네 가지 상태 중 하나로 우주 전기추진 뿐만 아니라 반도체 및 디스플레이 제조공정과 살균장치 등에 널리 활용되고 있다. 우리 대학 원자력및양자공학과 최원호 교수 연구팀이 인공위성이나 우주탐사선의 엔진인 홀 전기 추력기(홀추력기, Hall thruster)의 추력 성능을 높은 정확도로 예측할 수 있는 인공지능 기법을 개발했다고 3일 밝혔다. 홀추력기는 연비가
2025-02-03최근 생성형 인공지능은 텍스트, 이미지, 비디오 생성 등 다양한 분야에서 널리 사용되고 있지만, 소재 개발 분야에서는 아직 충분히 활용되지 못하고 있다. 이러한 상황에서 KAIST 연구진이 구조적 복잡성을 지닌 다공성 소재를 생성하는 인공지능 모델을 개발하여, 사용자가 원하는 특성의 소재를 선택적으로 생성할 수 있게 되었다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 원하는 물성을 가진 금속 유기 골격체(Metal-Organic Frameworks, MOF)를 생성하는 인공지능 모델을 개발했다고 23일 밝혔다. 김지한 교수 연구팀이 개발한 생성형 인공지능 모델인 모퓨전(MOFFUSION)은 금속 유기 골격체의 구조를 보다 효율적으로 표현하기 위해, 이들의 공극 구조를 3차원 모델링 기법을 활용해 나타내는 혁신적인 접근 방식을 채택했다. 이 기법을 통해 기존 모델들에서 보고된 낮은 구조 생성 효율을 81.7%로 크게 향상시켰다. 또한, 모퓨전은 생성 과정에서 사용자
2025-01-23강유전체는 메모리 소자에서 전하를 잘 저장하기 때문에 "전기를 기억하는 소재"와 같다는 특성으로 차세대 반도체 기술 개발에 있어 핵심 소재로 부각되고 있다. 우리 연구진이 이러한 강유전체 소재를 활용해 현재 메모리 반도체 산업의 양대 산맥인 디램(DRAM)과 낸드 플래시(NAND Flash) 메모리의 한계를 극복한 고성능, 고집적 차세대 메모리 소자를 개발하는데 성공했다. 우리 대학 전상훈 교수 연구팀이 하프니아 강유전체 소재*를 활용한 차세대 메모리 및 스토리지 메모리 기술을 개발했다고 6일 밝혔다. *하프니아 강유전체 소재: 비휘발성 절연막으로, CMOS 공정 호환성, 동작 속도, 내구성 등의 우수한 물리적 특성을 바탕으로 차세대 반도체의 핵심 소재로 활발하게 연구되고 있는 물질 디램 메모리는 우리가 스마트폰, 컴퓨터, USB 등에서 사용하는 데이터를 저장하는 휘발성 메모리다. 휘발성 특성으로 인해, 외부 전력이 끊어지면 저장된 데이터가 손실되지만, 공정 단가가 낮
2025-01-06차세대 2차원 층상구조 나노소재로 주목받는 인듐 셀레나이드(InSe)는 실리콘 반도체보다 전자 이동도가 뛰어나고 포화 속도가 두 배 이상 빠른 장점을 가지지만, 주로 N형 반도체로만 사용되어 왔다. 우리 연구진이 이를 극복하고 N형 및 P형, 양극에 우수한 성능을 제공하는 인듐 셀레나이드 기반 기술을 개발하여 차세대 전자 소자의 설계 및 상용화 가능성을 크게 앞당길 것으로 기대된다. 우리 대학 전기및전자공학부 이가영 교수 연구팀이 나노 반도체 인듐 셀레나이드(InSe)* 기반 혁신적인 양극성 다기능 트랜지스터를 개발했다고 30일 밝혔다. *인듐 셀레나이드(InSe): 인듐과 셀레늄으로 이루어진 무기 화합물 반도체로 2차원 층간 결합을 이루고 있음 인듐 셀레나이드는 N형 반도체로만 사용되어 왔는데, 이는 P형 반도체 및 상보적 회로 구현에 필요한 양(P) 전하를 띄는 정공*을 유도하기 어렵다는 문제 때문으로 이는 상용화의 큰 걸림돌로 작용해 왔다. *정공: P형 트랜지
2024-12-30KAIST 설명가능 인공지능연구센터(센터장 최재식 교수)는 별도의 복잡한 설정이나 전문 지식 없이도 손쉽게 AI모델에 대한 설명성을 제공할 수 있는 플러그앤플레이(Plug-and-Play) 방식의 설명가능 인공지능 프레임워크를 개발해, 이를 27일 오픈소스로 공개했다. 설명가능 인공지능(Explainable AI, 이하 XAI)이란 AI 시스템의 결과에 영향을 미치는 주요 요소를 사람이 이해할 수 있는 형태로 설명해주는 제반 기술을 말한다. 최근 딥러닝 모델과 같이 내부 의사 결정 프로세스가 불투명한 블랙박스 AI 모델에 대한 의존도가 커지면서 설명가능 인공지능 분야에 대한 관심과 연구가 증가했다. 그러나 지금까지는 연구자와 기업 실무자들이 설명가능 인공지능 기술을 활용하는 것이 몇 가지 이유로 쉽지 않았다. 우선, 딥러닝 모델의 유형별로 적용 가능한 설명 알고리즘들이 서로 달라서 해당 모델에 적용할 수 있는 설명 알고리즘이 무엇인지 알기 위해서는 XAI에 대해 어느 정도 사
2024-12-27