본문 바로가기 대메뉴 바로가기

연구

기계공학과 구승범 교수팀, NeurIPS 2024 MyoChallenge 대회 보행 부문 우승​
조회수 : 1908 등록일 : 2024-12-24 작성자 : 홍보실

기계공학과 구승범 교수(오른쪽 위) 연구팀 단체사진

< 기계공학과 구승범 교수(오른쪽 위) 연구팀 단체사진 >

우리 대학 기계공학과 구승범 교수 연구팀(박건우 박사과정, 신범수 박사과정, 박종현 박사과정)202412월 캐나다 밴쿠버에서 열린 NeurIPS 학회의 경쟁 대회 중 하나인 MyoChallenge 대회에 참가하여, 15개국에서 54팀이 참여한 가운데, 보행 운동 부문 1위를 차지하였다. 이 대회는 Google Deepmind, Google CloudÖssur가 후원하였다.

마이오챌린지 2024 수상 인증서

< 마이오챌린지 2024 수상 인증서 >

이 대회에서는 인체의 신경근육제어 원리를 연구하기 위한 다물체 동역학 기반의 인체 근골격 시뮬레이션 환경이 제시되었다. 자체 알고리즘으로 작동하는 의족/의수 (Prosthetic limb)가 결합된 인체 모델이 일상 생활 동작(상지 운동, 보행 운동)을 할 수 있도록 인체 근육 제어기를 학습하고, 그 성능을 경쟁하였다. 보행 운동 부문에서는 의족을 장착한 인체 모델이 주어진 트랙(평지, 거친길, 언덕, 계단)에 맞춰 보행할 수 있도록 인체 제어기를 학습하고, 그 안정성과 속도를 평가하였다.

연구팀이 사용한 심층강화학습 구조

< 연구팀이 사용한 심층강화학습 구조 >

하지에 54개 근육과 오른 다리 의족이 장착된 인체 모델의 근육 활성도를 제어하여, 지면이 고르지 않은 5m x 120m 경기장에서 넘어지지 않고 앞으로 나아가는 경기가 진행되었다. 구승범 교수 연구팀은 심층강화학습 기술과 인체 운동 데이터 기반 동작 생성 기술을 적용하여, 실제 사람이 근육을 제어하여 운동하는 모습을 모방할 수 있는 고성능 인체 운동 제어기를 학습하였다. 특히, 올해는 연구실에서 자체 구축한 120명의 평지, 계단 및 경사로 보행 동작 데이터셋을 사용해서, 인체 모델이 계단 및 경사로 지형에서도 안정적으로 보행할 수 있도록 학습하였다.

인체 모방 학습용 데이터 생성 과정

< 인체 모방 학습용 데이터 생성 과정 >

이 기술은 인체의 신경운동제어를 모방하여 다양한 상황에서의 보행 동작을 생성할 수 있다. 또한 이번 대회와 같이 인체에 착용하는 보조 장비와 상호 작용 시뮬레이션이 가능하여, 장비/기구의 개발 및 성능 개선에 사용 가능하다.

인체 모방 학습용 데이터 생성 과정

< 인체 모방 학습용 데이터 생성 과정 >

이번 대회에는 과학기술정보통신부(IITP ETRI 연구개발지원사업, 연구재단 미래유망융합기술파이오니어사업, 연구재단 중견연구자지원사업)의 지원을 받아 참여하였다.

 

관련뉴스