
< (왼쪽부터) 신소재공학과 김연규 박사과정, 엄성문 박사과정, 홍승범 교수 >
머리카락 두께의 수만 분의 1도 관찰할 수 있는 초정밀 현미경으로 특수 전자소자를 측정할 때 발생하던 오차의 원인이 밝혀졌다. 한미 공동 연구진이 그동안 측정 대상 물질의 특성으로 여겨졌던 오차가, 실제로는 현미경 탐침 끝부분과 물질 표면 사이의 극미세 공간 때문이라는 사실을 밝혀낸 것이다. 이번 연구는 반도체, 메모리 소자, 센서 등에 활용되는 나노 소재 특성을 정확하게 분석하여 관련 기술 발전에 크게 기여할 것이다.
우리 대학 신소재공학과 홍승범 교수 연구팀이 미국 버클리 대학 레인 마틴(Lane W. Martin) 교수팀과의 국제 공동연구를 통해, 주사탐침현미경 측정의 최대 난제였던 신호 정확도를 저해하는 핵심 요인을 규명하고 이를 제어하는 획기적인 방법을 개발했다고 18일 밝혔다.
연구팀은 현미경 탐침과 시료 표면 사이에 존재하는 비접촉 유전 간극이 측정 오차의 주요 원인임을 밝혀냈다. 이 간극은 측정환경에서 쉽게 변조되거나 오염물질로 채워져 있어 전기적 측정에 큰 영향을 미치는 것으로 나타났다.
이에 연구진은 물과 같은 고유전율 유체를 이용해 이 간극을 채우는 방법을 고안, 나노스케일 분극 전환 전압 측정의 정밀도를 8배 이상 향상했다. 이러한 접근은 기존의 대칭 커패시터 구조에서 얻은 결과와 거의 일치하는 값을 얻을 수 있어, 강유전체 박막의 특성 분석에 새로운 장을 열 것으로 기대되고 있다.
특히, 연구진은 규칙적으로 위아래 전기적 특성이 정렬된 리튬 니오베이트(PPLN, 광학 및 전자 소자에 사용되는 특수 결정) 물질에 물을 매개체로 사용했을 때, 기존보다 월등히 높은 정밀도의 압전 반응력 현미경(PFM, 물질의 미세 전기적 특성을 관찰하는 특수 현미경) 측정에 성공했다.

< 그림 1. (상단) 나노 유전 간극이 주사탐침현미경에서 작용되는 개략도. (좌) 물 제어 환경에서의 분극전환전압 측정, (중간) 실리콘 오일 제어 환경, (우) 일반적인 측정 환경 >
물로 제어된 유전 간극에서는 다른 분극 신호 간의 비대칭성이 4% 이하까지 떨어지는 것을 확인했다. 이는 물 분자가 표면 전하를 중화시켜 정전기력 영향을 최소화한 결과로 분석된다. 이는 마치 건조한 겨울철에 발생하는 정전기를 물로 없앨 수 있는 것과 비슷한 원리다.
홍승범 교수는 "이번 발견은 미세 탐침을 활용한 나노스케일 측정 기술의 불확실성 문제를 해결할 수 있는 기반 연구이며, 강유전체뿐만 아니라 다양한 기능성 재료의 전기적 특성 분석에 널리 적용될 수 있을 것”이라고 전망했다.
신소재공학과 엄성문 박사과정이 제 1저자로, 김연규 박사과정이 공저자로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)'에 9월 2일 자 출판되었다. (논문 제목: Unveiling the Nanoscale Dielectric Gap and Its Influence on Ferroelectric Polarization Switching in Scanning Probe Microscopy)

< 그림 2. 일반적인 환경과 물 제어 환경에서의 압전반응력현미경 이미징 결과. 물 환경에서 신호의 비대칭성과 품질이 월등하게 개선되었음 >
한편 이번 연구는 한국연구재단과 KAIST 글로벌 특이점 사업의 지원 및 미국 연구진과의 국제공동 연구를 통해 수행되었다.
기존의 몸에 부착해 사용하는 초음파 센서는 출력 세기가 약하고 구조가 쉽게 변형돼, 고해상도 영상이나 치료 목적으로 활용하기 어려웠다. 우리 대학 연구팀이 이러한 한계를 극복하고 곡률(휘어진 정도)을 자유롭게 조절할 수 있는 유연 초음파 센서 기술을 개발했다. 이번 성과는 몸에 밀착해 정확한 영상을 얻는 웨어러블 의료기기와 수술 없이 초음파로 치료까지 가능한 비침습적 차세대 의료기술의 발전 가능성을 크게 높였다. 우리 대학은 전기및전자공학부 이현주 교수 연구팀이 반도체 웨이퍼 공정(MEMS)을 활용해 유연함부터 단단함까지 자유롭게 구현할 수 있는 ‘Flex-to-Rigid(FTR) 구조’의 초음파 트랜스듀서(센서, CMUT)를 제작했다고 12일 밝혔다. 연구팀은 저온에서 녹는 금속(저융점 합금, LMPA)을 소자 내부에 삽입해, 전류를 가하면 금속이 녹아 자유롭게 형태를 바꾸고, 냉각 시 다시 고체로 굳어 원하는 곡면 형태로 고정할 수 있는 기술을 구현했
2025-11-12우리 대학 기계공학과(반도체시스템공학과 겸임) 김정원 교수 연구팀이 광주파수빗(optical frequency comb)을 색수차 공초점 및 분광 간섭계 기술과 결합해, 반도체 소자 후면에서 실리콘을 투과하여 내부 구조를 비파괴적으로 측정할 수 있는 새로운 광학 검사 기술을 개발했다. 최형수 박사과정이 제1저자로 참여하고 삼성전자 메모리사업부 계측기술팀과의 산학협력으로 수행된 이번 연구는 국제학술지 Light: Advanced Manufacturing 10월 29일 字에 게재됐다. (논문명: Backside illumination-enabled metrology and inspection inside 3D-ICs using frequency comb-based chromatic confocal and spectral interferometry) 최근 인공지능(AI)과 클라우드 컴퓨팅의 급성장으로 고성능·고효율 반도체 수요가 폭발적으로 증가하면서, 여러 칩을
2025-10-31우리 대학은 교내 연구·실험실 및 연구센터를 일반에 공개하는 `OPEN KAIST 2025' 행사를 10월 30일부터 이틀간 대전 본원 캠퍼스에서 개최한다고 23일 밝혔다. 2001년 시작돼 올해 13회째를 맞는 OPEN KAIST는 KAIST 공과대학(학장 이재우)이 격년제로 운영하는 대표 연구 공개 행사로, 시민이 연구 현장을 직접 체험하며 과학을 더 가깝게 만나는 프로그램을 지향한다. 올해는 16개 학과와 KAIST 우주연구원이 참여하며 △체험·시연 △랩 투어 △강연 △학과 소개 △성과 전시 등 5개 분야, 총 39개 프로그램이 운영된다. 특히 AI, 드론, 뇌과학, 원자력, 반도체 등 미래 핵심 분야를 직접 보고 배우는 과정이 대폭 강화됐다. 전산학부 한준 교수 연구실은 AI가 3차원 공간을 이해하고 가상 환경을 구성하는 기술을 소개한다. 참가자는 영상 속 사물이 재배치되는 과정을 시연으로 확인하고, 미래 사회에서 AI의 역할과 공간 인지 기
2025-10-23최근 인공지능(AI) 모델이 길고 복잡한 문장을 이해하고 처리하는 능력이 커지면서, 연산 속도와 메모리 효율을 동시에 높일 수 있는 새로운 반도체 기술의 필요성이 커지고 있다. 이런 가운데 우리 대학 ·국제연구진이 거대언어모델(LLM)의 추론 속도는 4배 높이면서 전력 소비는 2.2배 줄인 트랜스포머(Transformer)와 맘바(Mamba) 하이브리드 구조 기반의 AI 반도체 핵심 두뇌 기술을 세계 최초로 메모리 내부에서 직접 연산이 가능한 형태로 구현하는 데 성공했다. 우리 대학은 박종세 교수 연구팀이 미국 조지아 공과대학교(Georgia Institute of Technology) 및 스웨덴 웁살라 대학교(Uppsala University)와 공동연구를 통해, 차세대 인공지능 모델의 두뇌 역할을 하는 ‘AI 메모리 반도체(PIM, Processing-in-Memory)’ 기반 기술 ‘PIMBA’를 개발했다고 17일 밝
2025-10-17한국광전자공학회가 새롭게 출범하면서, 우리 대학 물리학과 조용훈 교수가 초대 회장으로 취임했다. 학회는 2007년과 2010년에 각각 설립된 LED·반도체조명학회와 한국광전자학회가 2017년에 통합해 활동해 온 한국LED·광전자학회를 모태로 한다. 미래 산업을 선도하는 첨단 융합 분야에서 광전자공학의 중요성이 최근 들어 크게 부각됨에 따라, 학회는 2025년 9월 ‘한국광전자공학회 (Korea Optoelectronics Society)’라는 새로운 명칭으로 출범하며 도약의 발판을 마련했다. 한국광전자공학회는 빛과 전자의 상호작용을 기반으로 한 광소자와 시스템분야의 첨단 연구와 기술 개발을 선도하는 학술 단체로서, ▲발광·디스플레이, ▲센서·에너지·수광, ▲전자·시스템·응용, ▲양자·광제어·신개념, ▲설계·평가·분석을 주
2025-10-14