< (왼쪽부터) 린다 밀스 뉴욕대학교 총장과 이광형 총장 >
우리 대학이 뉴욕대학교(New York University, 총장 린다 밀스, Linda G. Mills)와 인공지능 분야 공동학위제(Joint Degree) 도입을 위한 업무협약을 9일 오후 체결했다.
이번 협약은 인공지능 분야의 역량 강화하고 글로벌 인재를 양성하는 것은 단순한 기술 교육을 넘어 미래 사회 전반에 큰 발전을 도모할 수 있는 필수 요소라는 양교의 공감대를 바탕으로 추진됐다.
양교는 그간 인공지능 및 이와 융합한 다양한 산업 분야의 공동연구 그룹을 운영해 왔으며, 이번 협약을 바탕으로 인공지능 관련 분야 대학원 과정의 공동학위제를 설계하기 위한 운영위원회를 올해 안에 설치할 예정이다.
우리 대학 관계자는 "인공지능 공동학위제가 시행되면 KAIST가 뉴욕대와 힘을 합쳐 ‘하나의 인공지능 학위’를 창조하는 사상 초유의 혁신적 실험이 될 것으로 기대한다"라고 전했다.
위원회는 양교 교수진을 동수로 포함해 구성하며, ▴교육과정 구조 및 교과 구성 ▴교과 이수 로드맵 ▴교수진 및 학생 규모 산출 ▴예산 규모 산출 ▴운영시설 규모 및 내역 산출 ▴인증에 관한 법률적 사항 등이 포함된 공동학위제의 총괄 전략 기획을 본격적으로 논의할 예정이다. 또한, 우리 대학과 뉴욕대의 인공지능 공동학위를 상징하는 신규 로고의 개발도 진행된다.
양교는 이번에 추진하는 공동학위제가 인공지능 분야 교육 및 연구 역량을 고도화하고 현재 세계적으로 부족한 관련 분야 인재를 공동 발굴하고 양성하는데 이바지하는 것은 물론 글로벌 교육 및 연구 협력의 모범적인 사례로 자리 잡을 것이라 기대하고 있다.
우수한 역량을 보유한 양교 교수진은 인공지능 관련 분야의 혁신적이고 창의적인 교육을 제공할 예정이다. 학생들은 양교 교수진이 추진하는 다양한 국제 공동 연구 사업에 참여해 최고 수준의 연구 경험을 쌓을 수 있는 지원을 받게 된다. 이를 통해, 미래 글로벌 사회를 이끌어갈 우수 인적자원을 꾸준히 양성하는 것이 양교가 추진하는 이번 공동학위제의 핵심이다.
우리 대학과 뉴욕대학교는 2022년 6월 공동캠퍼스 구축을 위한 협력 협정을 체결한 이후, 캠퍼스 공유, 공동연구, 공동학사 사업 등을 추진해 왔다. 이를 포함하여, 혁신적인 조인트 캠퍼스 모델을 발전시켜 나가고 있으며, 활발한 국제협력 모델을 구축하고 있다.
특히, 2023학년도 2학기부터 학사과정 학생들의 교환학생 제도를 시행하고 있다. 선발 경쟁을 통해 우리 대학에서 30명, 뉴욕대에서 11명의 학생이 선발돼 참여 중이다. 우리 대학 학생들의 경우 뉴욕대학교에서 6개의 부전공 프로그램 중 하나를 이수하게 되면, 졸업 시 해당 부전공의 이수가 명시된 학위를 받게 된다.
양교는 학사과정 교환학생 운영 성과를 바탕으로 석·박사 과정 학생을 위한 복수학위(Dual Degree) 제도 도입에도 합의해 현재 구체적인 절차가 진행되고 있다. 이 밖에도, 2023년부터 현재까지 인공지능과 융합한 15개 분야에서 미래 공동연구 기획 사업을 수행하고 있으며, 올해 4분기부터는 본격적으로 인공지능과 바이오 분야를 중심으로 하는 10개 분야 국제 공동연구를 착수할 계획이다.
린다 밀스 뉴욕대 총장은 "인공지능 기술은 기후 변화, 헬스케어, 교육 격차 등 여러 사회적 문제를 해결하는 데 큰 역할을 할 수 있다"라며, "양교가 양성할 글로벌 인재는 이러한 사회적 문제를 해결하는 데도 혁신적인 기여를 하게 될 것이다"고 말했다.
이광형 총장은 "글로벌 기술 패권 경쟁 시대에 인공지능 기술의 개발은 국가와 기업이 경쟁력을 확보하는 데 필수적인 요소":라며 "뉴욕대학교와의 장기적 협력을 통해 인공지능을 다양한 분야에 혁신적으로 적용하고 발전시킬 수 있는 세계적 수준의 고급 인재 양성에 앞장서겠다"라고 밝혔다.
서울 포시즌스 호텔에서 열린 이날 체결식에는 이광형 총장, 여현덕 G-School 원장 등 우리 대학 관계자와 린다 밀스 총장, 조경현 컴퓨터과학과 교수, 캐린 퍼베제 박사(Karin Pavese, Executive Director of NYU-KAIST Innovation Research Institute) 등 뉴욕대 관계자 및 국내 기업 주요 인사들이 참석했다.
우리 대학 문술미래전략대학원 전우정 교수가 우리나라 법학자 최초로 세계 최고 과학 학술지인 네이처(Nature)의 자매지 ‘네이처 일렉트로닉스(Nature Electronics)'의 코리스판던스(Correspondance) 섹션에 군사 AI 통제의 과학적 도전에 관한 기고문을 게재했다고 8일 밝혔다. 지난 9월 9일부터 10일까지 서울에서 개최된 ‘2024 인공지능(AI)의 책임 있는 군사적 이용에 관한 고위급 회의(REAIM 2024)'에서 군사 AI 거버넌스에 중요한 진전이 이뤄졌다. 우리나라 뿐만 아니라 네덜란드, 싱가포르, 케냐, 영국이 공동 주최국으로 참여한 이 회의에서 미국, 독일, 프랑스, 일본 등 61개국이 ‘행동을 위한 청사진(Blueprint for Action)'을 채택했다. 이후 두 개 국가가 추가로 동참해 현재 총 63개국이 채택하고 있다. 전우정 교수는 이번 기고문에서 군사 분야의 AI 활용에 대한 이러한 원칙들을
2024-11-08인공지능 차세대 반도체, 자율 실행 실험실 (Self-Driving Lab), 소재 개발 자율 로봇(Robotics for Autonomous Materials Development) 등 최신 연구 동향과 네이처 편집위원들을 만나 토론을 할 수 있는 국제행사가 KAIST에서 열린다. 우리 대학이 2025년 2월 5일부터 7일까지 3일간 대전 KAIST 본원 학술문화관에서 ‘2025 네이처 컨퍼런스’를 개최한다고 4일(월) 밝혔다. 국제학술지 네이처와 공동으로 개최하는 이번 행사에서는 5일 네이처 인텍스(Nature Index)와 정책포럼으로 시작하여 6~7일은 ‘인공지능을 위한 신소재, 신소재를 위한 인공지능(Materials for AI, AI for Materials)’을 주제로 인공지능과 신소재 분야의 최신 연구 동향을 공유한다. 네이처 인덱스는 올해 특집호에서 한국의 과학기술 분야 연구개발(R&D) 성과가 인력과 예산
2024-11-04인공지능과 고성능 과학계산 간의 밀접한 관련성은 최근 2024년도 노벨 물리학상과 화학상이 동시에 수상된 것을 보면 알 수 있다. 우리 연구진이 인공지능을 활용하여 3차원 공간에 분포하는 원자 수준의 화학결합 정보를 예측하여 양자역학적 고성능 컴퓨터 시뮬레이션의 계산 시간을 획기적으로 단축하는데 성공했다. 우리 대학 전기및전자공학부 김용훈 교수팀이 물질의 특성을 도출하기 위해 슈퍼컴퓨터를 활용해 수행되는 원자 수준 양자역학적 계산에 필요한 복잡한 알고리즘을 우회하는 3차원 컴퓨터 비전 인공신경망 기반 계산 방법론을 세계 최초로 개발했다고 30일 밝혔다. 슈퍼컴퓨터를 활용한 양자역학적 밀도범함수론(density functional theory, DFT)* 계산은 빠르면서도 정확하게 양자 물성을 예측할 수 있게 해 첨단 소재 및 약물 설계를 포함한 광범위한 연구·개발 분야에서 표준적인 도구로 자리 잡아 필수 불가결한 역할을 하고 있다. *밀도범함수론(DFT):
2024-10-30과학기술정보통신부(장관 유상임, 이하 과기정통부)와 정보통신기획평가원(원장 홍진배, 이하 IITP)은 10. 28일(월) 양재 서울 인공지능 중심지에서 「국가 인공지능 연구거점(National AI Research Lab)」 개소식을 개최하였다. 이날 개소식에서 우리 대학 이광형 총장, 오세훈 서울시장 등의 참석자들은 「국가 인공지능 연구거점」의 성공적 출범을 축하하며, 대한민국 인공지능 세계 3개 강국 도약을 위한 민관 한 팀 등에 대한 의지를 다졌다. 「국가 인공지능 연구거점」 주관기관인 우리 대학 이광형 총장은 “이 곳에서 국내외 인공지능 연구자들이 교류하며 창의적 인공지능 연구를 펼치길 바란다”고 밝혔고, 「국가 인공지능 연구거점」이 위치할 서울시의 오세훈 시장은 “「국가 인공지능 연구거점」에 기반하여 서울시가 세계적인 인공지능 연구자들이 모여드는 국제 인공지능 중심지로 성장할 수 있도록 전폭 지원하겠다”고 강조하였다. 이어
2024-10-29인간의 두뇌는 외부 세상으로부터 감각 정보를 받아들이기 이전부터 자발적인 무작위 활동을 통해 학습을 시작한다. 우리 연구진이 개발한 기술은 뇌 모방 인공신경망에서 무작위 정보를 사전 학습시켜 실제 데이터를 접했을 때 훨씬 빠르고 정확한 학습을 가능하게 하며, 향후 뇌 기반 인공지능 및 뉴로모픽 컴퓨팅 기술 개발의 돌파구를 열어줄 것으로 기대된다. 우리 대학 뇌인지과학과 백세범 교수 연구팀이 뇌 모방 인공신경망 학습의 오래된 난제였던 가중치 수송 문제(weight transport problem)*를 해결하고, 이를 통해 생물학적 뇌 신경망에서 자원 효율적 학습이 가능한 원리를 설명했다고 23일 밝혔다. *가중치 수송 문제: 생물학적 뇌를 모방한 인공지능 개발에 가장 큰 장애물이 되는 난제로, 현재 일반적인 인공신경망의 학습에서 생물학적 뇌와 달리 대규모의 메모리와 계산 작업이 필요한 근본적인 이유임. 지난 수십 년간 인공지능의 발전은 올해 노벨 물리학상을 받은 제프리
2024-10-23