< (왼쪽부터) 생명화학공학과 고동연 교수, 허희령 박사과정, 한국원자력연구원 박찬우 박사, 한국화학연구원 소중섭 박사 >
후쿠시마 오염수가 2023년부터 해양에 방류되면서 중수로 원전 운영 시 발생하는 대표적인 방사성 물질인 삼중수소에 대한 대중적 관심이 크게 늘어났다. 삼중수소는 주로 물 분자에 포함돼 존재하기 때문에 해양 생태계와 환경에 위험을 초래할 수 있어 삼중수소 제거 설비가 필요한데, 한국 연구진이 촉매를 이용해 획기적으로 제거할 수 있는 기술을 개발해 화제다.
우리 대학 생명화학공학과 고동연 교수 연구팀이 한국원자력연구원(원장 주한규) 박찬우 박사 연구팀과의 공동연구를 통해 원전 폐수에 함유된 삼중수소 제거 공정을 위한 새로운 구조의 이중기능* 소수성 촉매를 개발했다고 27일 밝혔다. 연구팀의 촉매는 특정 반응 조건에서 최대 76.3%의 반응 효율을 보였으며, 특히 현재까지 밝혀진 바가 거의 없는 수백 ppm 수준의 저농도 동위원소에 대한 촉매의 작용을 구체적으로 확인했다.
*이중기능: 액체 상태의 물은 차단하고 기체 상태의 수증기는 통과하는 성질을 말함
< 그림 1. 크롬 기반 MOF의 소수성 변형 및 MOF-고분자 복합체 구조의 촉매 제작 과정. 물과의 직접적인 접촉에 의한 촉매 비활성화를 막고 분자 수준에서 수분의 출입을 제어한다. >
현재 삼중수소 제거에는 주로 액상 촉매 교환(Liquid-phase catalytic exchange) 공정이 이용되며 해당 공정 중 수소-물 동위원소 교환 반응이 일어난다. 촉매에 주로 이용되는 백금은 반응성이 높지만, 비용이 많이 들고 물에 의해 반응 자리가 쉽게 비활성화되는 문제가 있다. 따라서 적은 양의 백금을 고르게 분산하고, 물을 밀어내는 성질인 소수성 물질을 도입해 수분에 의한 촉매가 활성화되도록 하는 것이 핵심이다.
고동연 교수 연구팀은 금속-유기 골격체(Metal-organic framework, MOF)와 다공성 고분자의 복합체 형태의 새로운 구조의 삼중수소 제거 촉매를 개발했다. 평균 약 2.5나노미터(nm) 지름의 백금 입자를 금속-유기 골격체에 고르게 분포시키고, 이후 화학적인 변형을 통해 소수성을 부여하는 구조다. 분자 수준에서 소수성을 조절해 촉매가 물에 의해 활성을 잃는 것을 방지하면서도 동시에 반응에 필요한 양의 물 분자는 촉매에 쉽게 접근할 수 있도록 한다.
연구팀이 개발한 촉매는 기존 촉매 연구에서 구현하지 못한 원전 운전조건과 비슷한 매우 낮은 농도의 동위원소 함량에서도 삼중수소 제거 반응에 탁월한 활성을 나타냈다. 또한 4주 연속 가동 시에도 일정 수준 이상의 성능을 유지해 내구성을 입증했다.
< 그림 2. MOF-고분자 복합체 구조의 촉매(좌) 및 내부구조의 전자현미경 사진 >
연구팀은 나아가 현장 난반사 적외선 분광법(in-situ DRIFTS, in-situ Diffuse Reflection Infrared Fourier Transform Spectroscopy)* 분석을 통해 아주 작은 분자 수준에서의 물 분자의 실시간 움직임을 확인했다. 이를 통해 해당 촉매가 수분에 의한 촉매 비활성화를 억제하면서도 물 분자가 촉매 활성 자리에 지속적으로 접근해 반응이 일어날 수 있음을 입증했다.
*현장 난반사 적외선 분광법: 실시간으로 빛이 물질에 반사되어 돌아오는 정보를 분석함으로써 그 물질의 성분 변화를 알아내는 기술을 말함
이번 연구는 비교적 간단한 금속-유기 골격체 소재의 소수성 조절을 통해 촉매 비활성화의 주요 원인인 수분 저항성을 높이고, 삼중수소 제거 반응에 이용될 수 있는 새로운 구조의 촉매를 제안했다는 데에 의의가 있다.
< 그림 3. MOF의 소수성 변형 전후 촉매 활성도 비교 및 현장 적외선 분광법 분석을 통한 물 분자의 흡/탈착 거동 모식도 >
생명화학공학과 고동연 교수는 “삼중수소 폐액 처리뿐 아니라 반도체에 사용되는 중수소 원료 생산과 핵융합 연료 주기 기술 등 다양한 기술에 필수적인 수소 동위원소 분리 핵심 소재로의 응용이 기대된다”고 해당 연구의 의의를 설명했다.
생명화학공학과 허희령 박사과정이 제1 저자로 참여한 이번 연구 성과는 환경 분야 국제 학술지 ‘에너지 앤 인바이런멘탈 머티리얼스 (Energy & Environmental Materials)’에 7월 31일 자로 게재됐다. (논문명 : Bifunctionally hydrophobic MOF-supported platinum catalyst for the removal of ultralow concentration hydrogen isotope)
한편 이번 연구는 한국연구재단의 원전해체 안정성강화 융복합 핵심 기술개발사업의 지원을 받아 수행됐다.
전 세계의 플라스틱 생산량이 증가함에 따라 폐기되는 플라스틱의 양도 증가하게 돼 여러 가지 환경적, 경제적 문제를 일으키고 있다. 한국 연구진이 고성능 촉매를 개발해 플라스틱 폐기물의 분해와 재활용을 쉽고 경제적으로 할 수 있도록 하는 기술을 개발하여 화제다. 우리 대학 생명화학공학과 최민기 교수, 충남대학교 에너지 과학기술 대학원 신혜영 교수 공동연구팀이 폐플라스틱의 분해 및 재활용 공정의 중요 반응인 탈염소 반응의 반응 메커니즘을 규명하고 미량의 백금으로도 염소를 효과적으로 제거할 수 있는 촉매를 개발했다고 26일 밝혔다. 플라스틱의 재활용을 위한 다양한 연구가 진행되고 있는데, 특히 열분해를 이용한 화학적 재활용 방법은 복잡하고 비경제적인 플라스틱 폐기물의 분류 과정을 생략할 수 있어 산업적으로 큰 주목을 받고 있다. 또한 이때 생성되는 유분은 플라스틱의 원료인 에틸렌, 프로필렌으로 변환이 가능하기 때문에 완벽한 플라스틱의 순환 경제를 가능케 한다. 하지만 폐플라스
2024-09-28실시간으로 심박수를 측정할 수 있는 스마트 워치, 심장 박동수를 조절하는 페이스메이커 등 생체신호를 지속적으로 측정해 다양한 병을 진단하거나 치료할 수 있는 전자소자인 생체전자소자에 관한 연구가 활발히 진행되고 있다. KAIST 연구진이 생체조직 접촉 시 손상을 최소화하고 3D 마이크로니들 구조로 조직표면부터 심부까지 측정할 수 있는 전도성 하이드로젤 소재를 개발해 화제다. 우리 대학 신소재공학과 스티브 박 교수, 바이오및뇌공학과 박성준 교수 공동연구팀이 3D 프린팅을 통해 다양한 형태의 생체전자소자를 쉽고 빠르게 제작할 수 있는 전도성 고분자 기반 전극 물질을 개발했다고 7일 밝혔다. 이번 연구를 통해 기존 2D 전극 패터닝 기술로 접근하기 어려웠던 한계점을 극복해, 원하는 위치 및 심부 영역의 뇌 신경세포를 자극 및 측정할 수 있어, 뇌의 심부 영역에서 뇌의 활성화 원리를 정확하게 해석할 수 있을 것으로 기대된다. 또한 3D 프린팅을 통해 이 기술은 피부에 부착하는 헬스
2024-08-07기존 폐플라스틱을 화학적으로 분해해 재융합하는 해중합의 중요성이 증대하고 있다. 해중합 과정에서 환경 유해 물질을 걸러내 친환경 용기 등을 생산할 수 있기 때문이다. 폐플라스틱의 재활용을 더 가속화할 수 있도록 KAIST 연구진이 해중합 온도를 낮출 수 있는 원리를 발견했다. 우리 대학 화학과 서명은 교수 연구팀이 고분자 자기조립을 활용하여 고분자의 해중합 온도를 낮추는 방법을 개발했다고 24일 밝혔다. *중합은 간단한 분자 수준의 단량체들이 화학적 반응으로 연결되어 거대한 고분자 사슬을 형성하는 것을 말하며, 해중합은 고분자 사슬을 단량체 수준으로 분해하는 것을 말함. 기존에 고분자를 해중합하여 화학적으로 분해하는 방법은 높은 온도가 필요하여 효율성이 낮았다. 연구팀은 고분자 합성과정에서 자기조립이 일어날 때 해중합 온도가 낮아지는 것을 발견했다. 고분자가 잘 섞이지 않는 용매에서 일어나는 자기조립은 엔트로피*에 반해서 질서를 만들어내는 과정이다. 조그만한 분자 단량
2024-05-24한국 연구진이 고분자 구조를 체계적으로 튜닝해 기체 혼합물에서 이산화탄소를 선택적으로 투과시키는 고효율 멤브레인(분리막) 제조 기술을 개발했다. 이를 통해 수많은 화학 산업 및 환경 분야에서도 넓게 적용이 가능하여 탄소중립 구현에 크게 기여할 것으로 기대된다. 우리 대학 생명화학공학과 배태현 교수 연구팀이 고분자 분리막의 구조와 화학적 특성을 전략적으로 제어해 높은 효율로 이산화탄소를 분리 제거할 수 있는 기술을 개발했다고 22일 밝혔다. 멤브레인(분리막)은 목표 물질을 선택적으로 투과시키는 박막으로 정의되며, 저에너지 분리 기술로 주목을 받아 왔다. 하지만 기존의 고분자 분리막은 치밀한 구조를 가져 활용이 제한되는 단점이 있어 이를 대체하기 위해, 일정한 미세 기공을 갖는 소재를 분리막으로 활용해 기체의 투과 선택성을 높이려는 연구가 많이 수행됐다. 하지만 기존의 분자체 분리막들은 양산에 어려움이 있고 제조 과정이 복잡하며 강도가 부족해 실제 공정에 사용하기에 적합하지
2024-04-22신약 개발이나 재료과학과 같은 분야에서는 원하는 화학 특성 조건을 갖춘 물질을 발굴하는 것이 중요한 도전으로 부상하고 있다. 우리 대학 연구팀은 화학반응 예측이나 독성 예측, 그리고 화합물 구조 설계 등 다양한 문제를 동시에 풀면서 기존의 인공지능 기술을 뛰어넘는 성능을 보이는 기술을 개발했다. 김재철AI대학원 예종철 교수 연구팀이 분자 데이터에 다중 모달리티 학습(multi-modal learning) 기술을 도입해, 분자 구조와 그 생화학적 특성을 동시에 생성하고 예측이 가능해 다양한 화학적 과제에 광범위하게 활용가능한 인공지능 기술을 개발했다고 25일 밝혔다. 심층신경망 기술을 통한 인공지능의 발달 이래 이러한 분자와 그 특성값 사이의 관계를 파악하려는 시도는 꾸준히 이루어져 왔다. 최근 비 지도 학습(unsupervised training)을 통한 사전학습 기법이 떠오르면서 분자 구조 자체로부터 화합물의 성질을 예측하는 인공지능 연구들이 제시되었으나 새로운 화합물의
2024-03-25