
< (왼쪽부터) 물리학과 박용근 교수, 김건 박사 >
첨단 바이오/의학 분야에서 살아있는 세포와 조직 뿐만 아니라 오가노이드의 3차원 영상을 측정하고 정밀하게 분석하는 기술에 대한 중요도가 커지고 있다. 홀로토모그래피기술은 세포와 조직의 내부를 고해상도로 관찰할 수 있게 하여 재생의료, 맞춤형 의료, 난임 치료 등 연구에서 잠재력이 높게 평가되고 있다. 한국연구진이 광학 전문가가 아닌 의생명과학 연구자들을 대상으로 홀로토모그래피 장점과 넓은 응용 가능성을 알리는 논문을 발표해서 화제다.
우리 대학 물리학과 박용근 교수 연구팀이 기초과학연구원(IBS, 원장 노도영), 한국기초과학지원연구원(KBSI, 원장 양성광)과 공동 집필하여 홀로토모그래피의 원리와 응용 현황, 한계점 및 향후 방향성을 망라한 논문을 국제학술지에 게재했다고 30일 밝혔다.
홀로토모그래피는 엑스레이(X-ray) CT와 물리적인 원리는 동일하나 X선을 이용해 사람 몸속을 보는 CT와는 달리, 빛을 이용하여 세포와 조직의 내부를 고해상도로 관찰할 수 있게 한다. 염색이나 표지(label)와 같은 화학적⋅유전적 처리 없이 세포와 조직의 3차원 영상을 세포 소기관 수준의 해상도로 관찰할 수 있게 해주어, 이전에는 불가능했던 바이오 연구와 산업의 다양한 측정과 분석 한계를 극복할 수 있다.

< 그림 1. X선 CT와 비교하여 묘사한 홀로토모그래피의 모식도. CT와 유사하게 표지되지 않은 검체 고유의 광학적 성질을 3차원으로 측정한다는 공통점 있다. 홀로토모그래피는 X선 대신 가시광 영역의 빛을 조사하며, 흡수보다는 투명한 검체의 굴절률 측정을 제공한다. CT는 조사광의 기계적 회전을 통해서만 3차원 정보를 얻는 반면, 홀로토모그래피는 가시광 영역의 파면 제어기술을 적용해 이를 대체할 수 있다. >
살아있는 세포와 조직 뿐만 아니라 장기를 모사하는 3차원 구조체인 오가노이드(organoids)는 신약 개발 과정에서 동물 실험을 대체하고, 환자 맞춤형 치료법을 빠르고 효과적으로 확인하며, 궁극적으로 장기를 대체하는 치료 목적으로 활발하게 연구 개발이 진행 중이다.
오가노이드와 줄기세포 콜로니와 같은 3차원 생체 시편을 염색이나 전처리 없이 세포 소기관 수준으로 관찰하는 것은 3차원 생물학과 재생의학 분야에서 기초 연구 혁신과 바이오산업 응용 측면에서 모두 중요한 의미를 지니고 있다.

< 그림 2. 홀로토모그래피를 이용한 세포 측정 결과의 예시. B형 간염 바이러스 유전자가 삽입된 간암 세포주 (Hep3B)를 홀로토모그래피를 이용해 시간에 따라 측정하였다. Mitotracker 표지와 대조해보면 염색되지 않은 영상에서도 미토콘드리아의 형태를 포착할 수 있으며, 굴절률의 고대비로 인해 세포막 경계, 핵, 지질 등도 색인할 수 있다. H2O2 처리로 인해 세포 경계의 변형, 공포의 형성, 미토콘드리아의 응축 등이 관찰되며, 정상 배양액을 제공해 다시 회복되는 현상 또한 관찰할 수 있다. >
연구팀이 집필한 이번 논문에서는 3차원 생물학, 재생의료, 암 연구 등 다양한 분야에 홀로토모그래피 기술을 적용한 사례와 미래 발전 가능성을 소개했다. 또한, 광원의 결맞음(coherency) 정도에 따른 홀로토모그래피 기술을 유형화하고, 각 기술의 원리, 한계점, 극복 방안을 자세히 설명했다. 특히, 인공지능과 홀로토모그래피를 결합해 세포와 오가노이드를 관찰할 수 있는 한계를 크게 확장할 수 있는 전략을 심도 있게 다뤘다.
홀로토모그래피 기술은 첨단 바이오산업을 견인할 수 있는 가능성으로 인해, 전 세계 주요 대학 연구진들과 기업들이 관심을 갖고 연구 기술 개발에 투자하고 있는 분야다. 박용근 교수 연구팀은 지난 10여 년간 다양한 핵심 원천 기술과 응용 연구를 수행하며, 홀로토모그래피 분야를 국제적으로 선도하고 있다.

< 그림 3. 홀로토모그래피를 이용한 살아있는 장 오가노이드의 영상 장벽을 구성하는 다양한 종류의 세포와 소기관을 관찰할 수 있다. >
우리 대학 자연과학연구소 김건 박사, 생명과학과 윤기준 교수팀, IBS 유전체 교정 연구단(구본경 단장), 한국기초과학지원연구원의 이성수 박사팀 등 연구진과 공동 집필한 이번 논문은 ‘Nature Reviews Methods Primers’에 7월 25일 자 게재됐다. (논문명: Holotomography)
한편, 이번 연구는 연구재단의 리더연구사업과 창의도전연구지원사업, 과학기술정보통신부의 홀로그램핵심기술지원사업, 나노 및 소재 기술개발사업, 보건복지부의 보건의료 R&D 사업의 지원을 받아 수행됐다.
우리 몸에 생긴 암세포가 다른 부위로 퍼지는 암 전이나, 상처를 치유하기 위해 면역세포가 이동하는 과정 등 세포의 이동은 생명현상에 꼭 필요한 과정이다. 그러나 그동안 세포가 외부 자극 없이 스스로 이동 방향을 결정하는 원리는 밝혀지지 않았다. 우리 대학과 국제 공동 연구진은 이번 연구를 통해 세포가 스스로 방향을 정해 움직이는 원리를 규명, 향후 암 전이와 면역 질환의 원인을 밝히고 새로운 치료 전략을 세우는 데 중요한 단서를 제시했다. 우리 대학은 생명과학과 허원도 석좌교수 연구팀이 바이오및뇌공학과 조광현 석좌교수 연구팀, 미국 존스홉킨스대 이갑상 교수 연구팀과 공동으로 세포가 외부의 신호 없이도 스스로 이동 방향을 결정하는 ‘자율주행 메커니즘’을 세계 최초로 규명했다고 10일 밝혔다. 연구팀은 살아있는 세포 안에서 단백질들이 서로 어떻게 상호작용하는지를 눈으로 직접 볼 수 있는 새로운 이미징 기술 ‘INSPECT(INtracellular
2025-11-10“바이러스를 없애야 할 면역세포가, 왜 갑자기 우리 몸을 공격할까?” 바이러스에 감염된 세포만 정밀하게 제거해야 하는 ‘킬러 T세포’가 때로는 과열된 엔진처럼 정상 세포까지 파괴해 오히려 우리 몸에 손상을 입히는 현상이 있다. 우리 대학 연구진이 이처럼 폭주하는 킬러 T세포의 활성화 과정을 제어할 수 있는 핵심 원리를 규명하며, 향후 면역 과잉 반응을 조절하고 면역질환 치료제 개발의 실마리를 제시했다. 우리 대학은 의과학대학원 신의철·박수형 교수 연구팀이 충남대 의대 은혁수 교수와 공동연구를 통해, 킬러 T세포의 ‘비특이적 활성화’가 일어나는 분자적 원인을 규명하고, 이를 조절할 수 있는 새로운 치료 전략을 제시했다고 5일 밝혔다. 킬러 T세포(CD8+ T세포)는 감염된 세포만 선별적으로 제거해 바이러스 확산을 억제하지만, 반응이 과도해지면 감염되지 않은 정상 세포까지 공격하여 염증과 조직 손상을
2025-11-05세포의 상태를 원하는 방향으로 조절하는 것은 신약 개발, 암 치료, 재생 의학 등 생명과학 분야의 핵심 과제지만, 적합한 약물이나 유전자 표적을 찾는 일은 쉽지 않다. 이에 우리 대학 연구진은 세포와 약물 반응을 레고블록처럼 분해하고 다시 조립하는 방식으로 수학적으로 모델링해, 실제로 실험하지 않은 세포와 약물의 새로운 반응은 물론 임의의 유전자 조절 효과까지 예측할 수 있는 새로운 AI 기술을 개발했다. 우리 대학은 바이오및뇌공학과 조광현 교수 연구팀이 생성형 AI를 활용해 세포를 목표 상태로 유도할 수 있는 약물과 유전자 표적을 찾아내는 새로운 인공지능 기술을 개발했다고 16일 밝혔다. ‘잠재공간(latent space)’은 이미지 생성 AI가 사물이나 세포의 특징을 수학적으로 정리해 놓은 보이지 않는 ‘지도’와 같은 공간이다. 연구팀은 이 공간에서 세포의 상태와 약물의 효과를 각각 분리해내고, 이를 다시 조합해 실험하지 않은 세
2025-10-16우리 대학은 의과학대학원 이정호 교수의 교원 창업기업인 소바젠(각자대표 박철원·이정호)이 난치성 뇌전증을 치료하기 위한 혁신적인 RNA 신약 후보를 개발해, 총 7,500억 원 규모의 글로벌 기술 수출에 성공했다고 9일 밝혔다. 이번 성과는 KAIST의 기초 의과학 연구에서 출발한 혁신적 발견이 실제 신약 개발과 세계 시장 진출로 이어진 대표적 사례로 주목받고 있다. 이정호 교수 연구팀은 난치성 뇌전증과 악성 뇌종양 같은 치명적 뇌 질환의 원인이‘뇌 줄기세포에서 생긴 후천적 돌연변이(뇌 체성 돌연변이, Brain Somatic Mutation)’인 사실을 세계 최초로 규명해 네이처(Nature)와 네이처 메디슨(Nature Medicine) 등에 2015년, 2018년에 발표한 바 있다. 이후 신약 개발 전문가인 소바젠의 박철원 대표와 함께, 뇌전증의 원인 돌연변이 유전자인 MTOR를 직접 겨냥할 수 있는 RNA 신약(ASO, Antisen
2025-10-10전 NBC 뉴스 기자 찰스 서빈(Charles Sabine)과 미국의 전설적 포크 가수 우디 거스리(Woody Guthrie)의 공통점은 희귀 유전성 질환인 헌팅턴병을 앓았다는 점이다. 헌팅턴병은 근육 조정 능력 상실, 인지 기능 저하, 정신적 문제를 동반하는 대표적인 신경계 퇴행성 질환이다. 국내외 연구진은 이 병의 원인 단백질인 헌팅틴 단백질이 변형될 뿐 아니라, 세포 골격을 유지하는 중요한 기능을 수행한다는 사실을 새롭게 규명했다. 이번 발견은 헌팅턴병의 발병 원인 이해를 넓히고, 세포 골격 이상이 관여하는 알츠하이머병, 파킨슨병, 근위축증 등 다른 퇴행성 질환 연구에도 기여할 것으로 기대된다. 우리 대학은 생명과학과 송지준 교수 연구팀이 오스트리아 과학기술원(ISTA), 프랑스 소르본느대/파리 뇌연구원(Paris Brain Institute), 스위스 연방공대(EPFL) 등과 국제 공동연구를 통해, 초저온 전자현미경(cryo-EM)과 세포생물학적 기법을 통해 헌팅틴 단백
2025-10-01