KAIST 바이오시스템학과 박제균(朴濟均, 42) 교수팀이 나노자성입자를 이용 단백질, DNA 등의 생체분자(生體分子)를 초고감도로 검출할 수 있는 바이오센서 기술 개발에 성공했다.
이 기술은 나노(10억분의 일)그램 이하 수준으로 존재하는 극미량 물질을 검출할 수 있는 새로운 센서기술로 특정 자기장(磁氣場)하에서 생체분자의 정량적 및 고감도 분석이 가능하다.
황사 알레르기 등 많은 질환의 표지가 되는 생체분자들은 일반적으로 극미량 만으로도 인체에 심각한 영향을 미치기 때문에 이를 검출할 수 있는 센서기술은 차세대 나노바이오기술의 핵심분야에 속한다.
기존의 바이오센서 기술은 극미량 검출에는 본질적인 한계가 있는데 이번에 개발된 나노입자를 이용한 극미량 검출기술은 그러한 한계를 뛰어넘은 새로운 원천기술로서 향후 바이오센서, 랩온어칩(Lab on a chip, 손톱만한 크기의 칩으로 실험실에서 할 수 있는 연구를 수행할 수 있도록 만든 장치)개발 등에 크게 기여할 것으로 보인다.
이 연구결과는 최근 나노바이오분야의 세계적인 학술지인“랩온어칩”誌 인터넷 판에 발표되었고, 관련기술은 현재 특허 출원중에 있다.
신약이 효과를 내려면 약물이 몸속 단백질의 특정 부위에 정확히 결합해야 한다. 우리 대학 연구진이 단백질을 이루는 기본 단위인 펩타이드 분자의 접힘 구조를 원자 수준에서 정밀하게 제어할 수 있는 기술을 개발했다. 이번 연구로 원자 하나의 변환이 분자의 형태를 바꾸는 ‘설계 스위치’처럼 작용한다는 사실이 밝혀지면서, AI 기반 맞춤형 신약 설계의 핵심 플랫폼 기술로 주목받고 있다. 우리 대학은 이노코어 AI-CRED 혁신신약 연구단(단장 이희승 석좌교수)이 출범 후 첫 연구성과로, 단백질 분자 구조인 펩타이드의 아주 작은 변화인 ‘티오아마이드(thioamide) 변환’을 통해 분자의 접힘 방식을 정밀하게 조절할 수 있는 새로운 원리를 규명했다고 16일 밝혔다. *티오아마이드 변환(thioamide substitution): 펩타이드는 원래 C(=O)–NH(탄소–산소–질소로 이루어진 결합)인데 여기서 산소
2025-11-16KAIST 연구진이 구글 딥마인드의 ‘알파폴드3(AlphaFold3)’를 뛰어넘는 차세대 바이오 AI 모델 ‘K-Fold’ 개발에 나섰다. 이번 연구를 통해 KAIST는 빠르고 정확한 신약 개발, 낮은 실패율, 그리고 AI 기반 과학 혁신을 실현하며, ‘AI가 과학을 돕는 시대’를 넘어 ‘AI가 과학을 이끄는 시대’를 여는 주역으로 떠오를 전망이다. KAIST(총장 이광형)는 과학기술정보통신부가 주관하는‘AI 특화 파운데이션 모델 개발 사업’의 주관기관으로 선정되어, 의과학·바이오 분야 AI 파운데이션 모델 개발에 본격 착수했다고 7일 밝혔다. KAIST는 이번 사업을 통해 국내 최고 수준의 인공지능(AI) 연구 역량을 바이오 분야에서도 입증하고, 신약 개발 등 첨단 바이오 AI 연구에 활용할 수 있는 차세대 파운데이션 모델 ‘K-Fold&rs
2025-11-07전 NBC 뉴스 기자 찰스 서빈(Charles Sabine)과 미국의 전설적 포크 가수 우디 거스리(Woody Guthrie)의 공통점은 희귀 유전성 질환인 헌팅턴병을 앓았다는 점이다. 헌팅턴병은 근육 조정 능력 상실, 인지 기능 저하, 정신적 문제를 동반하는 대표적인 신경계 퇴행성 질환이다. 국내외 연구진은 이 병의 원인 단백질인 헌팅틴 단백질이 변형될 뿐 아니라, 세포 골격을 유지하는 중요한 기능을 수행한다는 사실을 새롭게 규명했다. 이번 발견은 헌팅턴병의 발병 원인 이해를 넓히고, 세포 골격 이상이 관여하는 알츠하이머병, 파킨슨병, 근위축증 등 다른 퇴행성 질환 연구에도 기여할 것으로 기대된다. 우리 대학은 생명과학과 송지준 교수 연구팀이 오스트리아 과학기술원(ISTA), 프랑스 소르본느대/파리 뇌연구원(Paris Brain Institute), 스위스 연방공대(EPFL) 등과 국제 공동연구를 통해, 초저온 전자현미경(cryo-EM)과 세포생물학적 기법을 통해 헌팅틴 단백
2025-10-01전 세계 치매 환자는 약 5,000만 명으로 추산되며, 이 중 약 70% 이상을 차지하는 알츠하이머병은 대표적인 신경 퇴행성 뇌질환이다. 한국 연구진이 알츠하이머병의 두 핵심 병리 단백질인 타우와 아밀로이드 베타가 실제로 직접 소통하며 독성을 조절한다는 사실을 세계 최초로 분자 수준에서 규명했다. 이번 성과는 알츠하이머병의 병태생리를 새롭게 바라보게 하는 한편, 질환 조기 진단을 위한 바이오마커 발굴과 신경퇴행성 뇌질환 치료제 개발에 중요한 단서를 제공할 것으로 기대된다. 우리 대학 화학과 임미희 교수(금속신경단백질연구단 단장) 연구팀이 국가과학기술연구회(NST, 이사장 김영식) 산하 한국기초과학지원연구원(KBSI, 원장 양성광) 첨단바이오의약연구부 이영호 박사 연구팀과 공동연구, 한국과학기술연구원(KIST, 원장 오상록) 뇌과학연구소 김윤경 박사, 임성수 박사 연구 참여로, 알츠하이머병의 주요 병리 단백질 중 하나인 타우의 미세소관 결합 영역(microtubule-bindin
2025-08-25우울증(Major Depressive Disorder, MDD)은 전 세계적으로 가장 흔한 정신질환 중 하나지만, 그 분자적 발생 원인*은 여전히 명확히 규명되지 않은 상태다. 국내 연구진은 우울증이 단순한 신경세포 손상 때문만이 아니라, 특정 신경 신호 경로의 교란으로 발생할 수 있음을 밝혀내며, 특히 고령 우울증 환자에게 기존 항우울제가 반응하지 않는 분자적 원인을 규명했다. 이번 연구는 광유전학 기술을 활용한 신경 신호 조절 치료의 가능성을 제시했고, 고령 우울증 환자에게도 향후 ‘Numb’ 단백질을 표적으로 하는 새로운 치료 전략 개발의 실마리를 제공했다. *분자적 발생 원인: 발병 원인에 대해 뇌 속 분자나 단백질, 유전자 수준에서 설명 우리 대학 생명과학과 허원도 석좌교수 연구팀, 국립과학수사연구원(국과수, 원장 이봉우) 이민주 법의관, 아주대학교의료원 (의료원장 한상욱) 병리과 김석휘 교수 연구팀과 협력하여, 극단 선택을 한 환자의 뇌 조직의
2025-08-19