
- “단백질이 생체분자를 인식하고 결합하는 기작을 규명해 50년 동안의 수수께끼 풀었다” -
- 생명현상의 이해와 효능이 높은 치료제 개발에 활용 가능성 기대 -
우리 학교 생명과학과 김학성 교수가 서울대학교 물리학과 홍성철 교수와 공동으로 단백질이 생체 내 분자를 인식하고 결합하는 메커니즘을 규명했다.
연구 결과는 생명과학분야의 권위지인 ‘네이처 케미컬 바이올로지(Nature Chemical Biology)’ 3월 18일자 온라인 판에 발표됐다.
단백질이 생체분자를 인식하고 결합하는 메카니즘을 밝혀낸 이번 연구로 인해 단백질의 조절기능을 보다 정확하게 파악할 수 있게 돼 앞으로 복잡한 생명현상을 이해하는데 핵심적인 역할을 할 것으로 기대된다.
이와 함께 단백질의 생체분자 인식은 각종 질병의 발생과도 밀접하게 연관돼 있어 향후 효능이 높은 치료제 개발에도 기여할 것으로 전망된다.
핵산, 단백질 등으로 알려진 생체분자는 생물체를 구성하거나 생물의 구조, 기능, 정보전달 등에도 꼭 필요한 물질이다.
특히, 단백질은 생체분자를 특이적으로 인지하고 결합하면서 모든 생명현상을 조절해 생명현상을 유지하는데 가장 중요한 역할을 한다. 단백질의 생체분자 인식에 오류가 발생하면 비정상적 현상으로 각종 질병이 유발되기도 한다.
연구팀은 단백질이 다양한 구조를 갖는데 구조적으로 가장 안정한 ‘열린 구조’와 상대적으로 불안정한 ‘부분 닫힘 구조’를 반복한다는 점에 주목했다.
김 교수 연구팀은 단백질의 생체분자 인식 메커니즘을 설명하기 위해 생체분자가 결합하면서 단백질의 구조가 변하는 현상을 단 분자 수준에서 실시간으로 분석했다.
연구결과 생체분자는 가장 안정된 구조의 단백질을 주로 선호하며 결합과 동시에 단백질을 가장 에너지 수준이 낮은 안정된 구조로 변화시킨다는 사실을 세계 최초로 규명했다.
이와 함께 생체분자는 불안정한 ‘부분 닫힘 구조’에도 결합해 단백질 구조를 변화시킨다는 사실도 밝혀냈다.
연구팀의 이번 결과는 단백질의 생체분자 인식 메커니즘을 설명하기 위해 현재까지 제안된 모델인 단백질이 생체분자와 결합하면서 구조가 변한다는 ‘유도형 맞춤 모델’과 단백질의 다양한 구조 중에서 최적의 하나만을 선택적으로 인지한다는 ‘구조 선택 모델’에 대해 처음으로 실험을 통해 완벽히 입증해 낸 것으로 학계는 평가하고 있다.
김학성 교수는 이번 연구에 대해 “생체분자가 존재하는 경우 단백질의 구조 전환 속도가 변하는 현상을 단 분자 수준에서 분석해 단백질의 생체분자 인식 메카니즘을 처음으로 직접 증명한 것”이라며 “생물 교과서에 50년 동안 가설로만 인식되어지던 것을 세계 최초로 실험으로 증명해 풀리지 않을 것만 같았던 수수께끼를 풀어냈다”고 의의를 밝혔다.
그림1. 열린 구조와 부분적으로 열린 구조를 갖고 있는 단백질이 생체분자를 인지하고 결합하는 양상

그림2. 단백질의 다양한 구조 중에서 가장 안정한 상태인 열린 구조(open form)에 생체분자(ligand) 가우선적으로 결합해 더욱 안정한 완전히 닫힌 구조(closed form)로 변함. 또한 단백질의 불안정한 구조(partially closed form)에도 생체분자가 결합해 완전히 닫힌 구조로 변하게 함.
KAIST 연구진이 구글 딥마인드의 ‘알파폴드3(AlphaFold3)’를 뛰어넘는 차세대 바이오 AI 모델 ‘K-Fold’ 개발에 나섰다. 이번 연구를 통해 KAIST는 빠르고 정확한 신약 개발, 낮은 실패율, 그리고 AI 기반 과학 혁신을 실현하며, ‘AI가 과학을 돕는 시대’를 넘어 ‘AI가 과학을 이끄는 시대’를 여는 주역으로 떠오를 전망이다. KAIST(총장 이광형)는 과학기술정보통신부가 주관하는‘AI 특화 파운데이션 모델 개발 사업’의 주관기관으로 선정되어, 의과학·바이오 분야 AI 파운데이션 모델 개발에 본격 착수했다고 7일 밝혔다. KAIST는 이번 사업을 통해 국내 최고 수준의 인공지능(AI) 연구 역량을 바이오 분야에서도 입증하고, 신약 개발 등 첨단 바이오 AI 연구에 활용할 수 있는 차세대 파운데이션 모델 ‘K-Fold&rs
2025-11-07전 NBC 뉴스 기자 찰스 서빈(Charles Sabine)과 미국의 전설적 포크 가수 우디 거스리(Woody Guthrie)의 공통점은 희귀 유전성 질환인 헌팅턴병을 앓았다는 점이다. 헌팅턴병은 근육 조정 능력 상실, 인지 기능 저하, 정신적 문제를 동반하는 대표적인 신경계 퇴행성 질환이다. 국내외 연구진은 이 병의 원인 단백질인 헌팅틴 단백질이 변형될 뿐 아니라, 세포 골격을 유지하는 중요한 기능을 수행한다는 사실을 새롭게 규명했다. 이번 발견은 헌팅턴병의 발병 원인 이해를 넓히고, 세포 골격 이상이 관여하는 알츠하이머병, 파킨슨병, 근위축증 등 다른 퇴행성 질환 연구에도 기여할 것으로 기대된다. 우리 대학은 생명과학과 송지준 교수 연구팀이 오스트리아 과학기술원(ISTA), 프랑스 소르본느대/파리 뇌연구원(Paris Brain Institute), 스위스 연방공대(EPFL) 등과 국제 공동연구를 통해, 초저온 전자현미경(cryo-EM)과 세포생물학적 기법을 통해 헌팅틴 단백
2025-10-01전 세계 치매 환자는 약 5,000만 명으로 추산되며, 이 중 약 70% 이상을 차지하는 알츠하이머병은 대표적인 신경 퇴행성 뇌질환이다. 한국 연구진이 알츠하이머병의 두 핵심 병리 단백질인 타우와 아밀로이드 베타가 실제로 직접 소통하며 독성을 조절한다는 사실을 세계 최초로 분자 수준에서 규명했다. 이번 성과는 알츠하이머병의 병태생리를 새롭게 바라보게 하는 한편, 질환 조기 진단을 위한 바이오마커 발굴과 신경퇴행성 뇌질환 치료제 개발에 중요한 단서를 제공할 것으로 기대된다. 우리 대학 화학과 임미희 교수(금속신경단백질연구단 단장) 연구팀이 국가과학기술연구회(NST, 이사장 김영식) 산하 한국기초과학지원연구원(KBSI, 원장 양성광) 첨단바이오의약연구부 이영호 박사 연구팀과 공동연구, 한국과학기술연구원(KIST, 원장 오상록) 뇌과학연구소 김윤경 박사, 임성수 박사 연구 참여로, 알츠하이머병의 주요 병리 단백질 중 하나인 타우의 미세소관 결합 영역(microtubule-bindin
2025-08-25우울증(Major Depressive Disorder, MDD)은 전 세계적으로 가장 흔한 정신질환 중 하나지만, 그 분자적 발생 원인*은 여전히 명확히 규명되지 않은 상태다. 국내 연구진은 우울증이 단순한 신경세포 손상 때문만이 아니라, 특정 신경 신호 경로의 교란으로 발생할 수 있음을 밝혀내며, 특히 고령 우울증 환자에게 기존 항우울제가 반응하지 않는 분자적 원인을 규명했다. 이번 연구는 광유전학 기술을 활용한 신경 신호 조절 치료의 가능성을 제시했고, 고령 우울증 환자에게도 향후 ‘Numb’ 단백질을 표적으로 하는 새로운 치료 전략 개발의 실마리를 제공했다. *분자적 발생 원인: 발병 원인에 대해 뇌 속 분자나 단백질, 유전자 수준에서 설명 우리 대학 생명과학과 허원도 석좌교수 연구팀, 국립과학수사연구원(국과수, 원장 이봉우) 이민주 법의관, 아주대학교의료원 (의료원장 한상욱) 병리과 김석휘 교수 연구팀과 협력하여, 극단 선택을 한 환자의 뇌 조직의
2025-08-19기존의 ‘광유전학적 분자 응축물 기술(생체 분자를 빛을 사용해 특정한 덩어리(응축체)로 뭉치게 하거나 풀리게 조절하는 기술)’은 세포 안에서 여러 단백질이나 RNA가 다양하게 섞이기 때문에 원하는 분자만 골라서 다루기 어렵다는 한계가 있었다. 이 한계를 넘어, 우리 연구진이 ‘빛’을 쪼여 세포 속 특정 단백질이나 유전정보(mRNA)를 원하는 시점에 꺼내 쓸 수 있는 기술을 개발하여 유전자 조절 기술, 신약 개발 등에서의 새로운 가능성을 제시했다. 우리 대학 생명과학과 허원도 석좌교수 연구팀이 물리학과 박용근 석좌교수 연구팀과 협력하여, 단백질 및 mRNA를 세포 내에서 빛으로 원하는 시점에 저장(Store)하고 방출(Release)할 수 있는 ‘릴리저 기술(RELISR, REversible Light-Induced Store and Release)’을 개발했다고 23일 밝혔다. 이번 연구는 세포 내 다양한 생
2025-07-23