< 의과학대학원 이지민 교수 >
우리 대학 의과학대학원 이지민 교수 연구팀이 유럽분자생물학연구소(EMBL) 미하일 사비스키(Mikhail Savitski) 교수, 서울대학교 백성희 교수와 공동 연구를 통해 질환의 억제와 촉진의 실마리가 되는 단백질 수명을 결정하는 단백질 *번역 후 조절(post-translational modification, 이하 PTM) 코드를 규명했다고 1일 밝혔다.
* 번역 후 조절(PTM): DNA가 mRNA가는 전사 과정을 거쳐 최종 단백질로 번역까지 일어난 이후에 추가적으로 생기는 현상으로, 단백질의 구조나 효능에 영향을 미치는 것으로 주로 알려져 있음
연구팀은 기존에 단백질의 운명 조절과 연관이 없을 것으로 생각됐던 PTM 신호를 `PTM-활성화(PTM-activated) 데그론'과 `PTM-불활성화(PTM-inactivated) 데그론'으로 구분해 단백질 수명 조절과의 관련성을 규명했다.
*PTM 활성화 데그론과 PTM 볼활성화 데그론: PTM에 의해 데그론이 활성화 되는 것은 단백질의 번역후 변화가 단백질의 분해를 촉진했다는 것을 의미하며, 반대로 불활성화 데그론은 번역 후 조절 신호가 단백질의 분해를 억제하여 단백질의 축적이 일어났음을 의미
< 그림 1. PTM-활성화(PTM-activated) 데그론과 PTM-불활성화(PTM-inactivated) 데그론으로 구분해 단백질 수명 조절과의 관련성을 설명한 그림으로 질병을 촉진하는 단백질의 분해 혹은 질병을 억제하는 단백질의 축적을 미리 예측 가능하여 암이나 퇴행성 뇌질환의 발병 및 억제를 진단 가능 >
여기서 데그론 코드란 단백질 수준을 조절 가능한 아미노산 서열의 조합 개념으로 질병의 진행이나 억제의 스위치 역할을 하는 단백질의 수명 조절 코드를 말한다.
연구팀은 이를 규명한 결과 기존 치료제가 접근할 수 없는 `기존에 약으로 만들지 못했던(Undruggable)' 신규 타깃의 정확도 높은 치료법 개발의 가능성을 열었다.
< 그림 2. PTM 중 대표적으로 단백질 운명을 결정하는 메틸화를 메틸-활성화 데그론과 메틸-불활성화 데그론으로 구분 >
또한 연구팀은 신규 PTM 관련 코드를 다각화함으로 인해 단백질 분해 및 생성의 근본 원인을 알 수 없었던 기존의 신호 전달 체계에 PTM을 유도하거나 제거하는 효소의 역할을 재조명했다. 이번 연구를 통해 질병 관련 단백질 수명 변화 기원을 PTM 코드로 디지털화해서 미리 규명을 함으로써 그동안 단백질 수준을 마지막 단계에서 조절하는 *유비퀴틴 신호에만 집중했던 부분을 변경하도록 제안했다.
* 유비퀴틴: 단백질이 분해되기 전에 먼저 일어나는 대표적인 화학적 변화로 알려져 있으며 없어져야 할 단백질에 붙는 표지자로 널리 알려져 있음
우리 대학 의과학대학원 이지민 교수가 제1 저자로 초청돼 기고한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications, IF 17.69)' 에 지난 1월 13일 字 출판됐다. (논문명 : Control of protein stability by post-translational modifications).
< 그림 3. 암을 유발하는 인자의 대표인 MYC와 종양 억제자 대표인 p53의 단백질 수명에 영향을 끼치는 PTM 데그론 코드 도식 >
이지민 교수는 "새롭게 제시한 PTM-활성화 또는 PTM-불활성화 데그론 코드의 규격화는 기존 약에 반응하지 않거나 저항성이 생기는 단백질 수준을 조절 가능한 다양한 질병 (대표적으로 암이나 퇴행성 뇌질환)의 진단 및 의약품 개발로 발전시킬 수 있을 것으로 기대된다ˮ 고 밝혔다.
한편 이번 연구는 삼성미래기술육성사업, 한국연구재단 리더연구사업,유럽분자생물학연구소 및 과학기술정보통신부 의사과학자양성사업의 지원을 받아 수행됐다.
과학기술정보통신부와 한국연구재단은 '이달의 과학기술인상' 6월 수상자로 우리 대학 생명과학과 김찬혁 교수를 선정했다고 7일 밝혔다. 김 교수는 환자 면역체계를 이용한 새로운 방식의 알츠하이머 치료제를 개발해 퇴행성 뇌 질환 치료 실마리를 마련한 공로를 인정받았다.치매의 가장 큰 원인인 알츠하이머병은 뇌 안에서 비정상적으로 발생한 베타아밀로이드 펩타이드가 이상 축적되는 현상과 타우 단백질의 엉킴으로 발생하는 것으로 알려져 있다. 최근 베타 아밀로이드를 제거하는 항체 치료제가 미국식품의약국(FDA) 허가를 받았지만, 항체 특성상 뇌 안에 염증반응 부작용을 일으켜 인지기능 회복에 악영향을 줄 수 있다는 한계가 있었다. 김 교수팀은 몸속 세포가 사멸하고 생성하는 과정에서 죽은 세포를 제거하는 포식작용을 활용하는 새 치료제를 개발했다. 포식작용에 관여하는 단백질인 'Gas6'을 변형시켜, 이 단백질이 세포 대신 베타 아밀로이드를 제거하도록 한 것이다. 이 방식
2023-06-08우리 몸에 침입한 병원균이나 암세포를 치료할 수 있는 면역세포인 T세포 중 CD4+ T세포는 적응면역계의 지휘관과 같은 역할을 하며, 이러한 CD4+ T세포의 활성 정도에 따라서 천식과 같은 만성질환의 진행 양상과 예후가 달라지게 된다. T세포의 활성화 증폭을 위해서는 마치 과녁 모양처럼 면역학적 시냅스 형성이 필요하다는 보고들이 있으나 어떠한 메커니즘으로 면역학적 시냅스가 형성이 되는지는 잘 알려져 있지 않았다. 우리 대학 의과학대학원 이흥규 교수 연구팀이 면역학적 시냅스 형성에 섬모 형성 단백질(IFT20)과 엔도솜 형성 단백질(TSG101)의 결합이 중요한 역할을 한다고 26일 밝혔다. 의과학대학원 정지웅 박사(현, 서울대병원 알레르기내과 임상강사), 강인 박사과정, 생명과학과 김유민 박사과정 등이 주도한 이번 연구에서 연구팀은 단일세포 전사체 분석법을 활용해 활성화된 CD4+ T세포에서 섬모 형성 단백질(IFT20)의 발현이 증가해 있음을 확인했다. 연구팀은 T
2023-04-263차원 게놈 구조 연구를 통해, 세포핵 내 게놈이 계층적인 구조로 이루어져 있으며 각 구조가 다양한 유전자 발현 조절에 관여한다는 것이 알려져 있다. 또한 이러한 게놈 3차 구조는 암, 노화 등 다양한 복합질환에서 질환 특이적 유전자 발현과 밀접한 연관이 있음이 최근 밝혀지고 있다. 하지만 기존 게놈 3차 구조는 비교적 관찰이 쉬운 염색체 내 상호작용에 대부분 국한되어 있었고, 더 큰 범위에서의 염색체 간 상호작용에 대해서는 관찰 실험 기법의 한계로 인해 연구가 거의 진행되지 않았다. 우리 대학은 생명과학과 정인경 교수 연구팀이 서울대학교 기계공학부 신용대 교수 연구팀, 부산대학교 최정모 교수 연구팀과의 공동연구를 통해 세포핵 내 3차원 게놈 구조 신규 생성 원리와 이를 조절하는 매개 인자를 발견했다고 10일(월) 밝혔다. 생명과학과 주재건 석박사통합과정과 서울대학교 조성현 연구원이 주도한 이번 연구에서 연구팀은 행렬 분해 기법이란 분석 기법을 활용하여 게놈 3차 구조 데이터
2023-04-10암을 부작용 없이 효과적으로 치료하기 위해서는 약물을 암세포에 특이적으로 전달할 수 있는 기술이 필요하다. 단백질로 구성되어 있는 단백질 조립체는 암 치료를 위한 약물 전달에 널리 활용되고 있다. 단백질 조립체를 약물 전달에 이용하기 위해서는 암세포를 인식하는 단백질과 암세포를 사멸시키는 약물을 단백질 조립체에 효과적으로 접합시키는 기술, 즉 기능화(functionalization) 기술이 필수적이다. 그러나, 단백질 조립체의 경우 기능화 과정이 매우 복잡하고, 효율이 낮으며, 대부분 작은 크기의 화학 약물(chemical drug)의 적용에만 한정되어 실제 사용에 많은 제약이 있었다. 우리 대학 생명과학과 김학성 교수 연구팀이 암세포에 특이적으로 약물을 전달할 수 있는 클라트린 조립체를 개발했다고 14일 밝혔다. 생체 내 클라트린이라는 단백질 조립체는 세포 안에서 자가조립(self-assembly)되어 물질을 효율적으로 수송(endocytosis)한다. 클라트린 조립체는
2023-03-14인간의 생명 정보를 담고 있는 DNA는 세포핵(nucleus) 내에 존재하며 이 정보는 전령 RNA(messenger RNA, mRNA)에 담겨 세포질로 이동 후 단백질 생성의 기초가 된다는 것이 소위 유전자 발현의 센트럴 도그마(central dogma of eukaryotic gene expression)다. 이 과정이 온전히 이루어지기 위해서는 유전자 발현의 최종 산물인 단백질 중 DNA 정보를 유지 및 활용하는 단백질들이 다시 세포핵으로 이동하여 작용하는 순환의 과정이 필요하다. 세포핵은 단백질의 투과가 불가능한 이중의 지질막(double-layered lipid membrane)으로 둘러싸인 구조이기 때문에 세포질에서 생성된 단백질이 핵으로 이동하기 위해서는 핵공(nuclear pore)라는 작은 구멍을 통과해야만 가능한 것으로 알려져 있다. 그리고, 핵공을 통해 세포핵으로 이동이 가능한 단백질들은 핵 이동 신호(nuclear localization signal, N
2023-02-28