- KAIST 이상엽 교수팀, 과학기술부 시스템생물학 연구사업 결실
- 미국 바이오테크놀로지 바이오엔지니어링지 표지 논문 게재
1. 연구개발 과정 및 결과
전 세계적으로 생명공학에 대한 관심이 증가하고 있는 가운데 유용한 단백질을 세포내 원하는 위치에서 자유자재로 생산이 가능하게 하는 『슈퍼대장균』이 개발되었다.
KAIST(총장 로버트 러플린) 생명화학공학과 대사공학 국가지정연구실 이상엽(李相燁, 40세, LG화학 석좌교수)교수팀이 개발에 성공한 이 연구결과는 45년 전통의 세계 최고의 생물공학 잡지인 바이오테크놀로지 바이오엔지니어링(Biotechnology and Bioengineering)誌 11월호의 표지 논문으로 게재된다.
이 논문의 핵심 기술은 현재 전 세계적으로 집중적인 조명을 받고 있는 시스템 생명공학기법을 도입한 프로테옴 분석에 의해 개발한 재조합단백질의 생산을 획기적으로 향상시키는 것으로써 향후 단백질 생산의 산업화 및 관련 연구에 있어 필수적인 기술로 평가되고 있다. 이번에 李 교수팀이 개발한 『슈퍼대장균』을 이용하면 의약품, 진단, 효소, 구조물 등의 다양한 용도로 사용되는 인체 유용한 단백질을 세포질이나 주변세포질의 원하는 위치에 효율적으로 생산해 낼 수 있게 된다. 李 교수팀은 과학기술부 시스템생물학 연구개발 사업비 지원으로, 전 세계적으로 가장 연구가 많이 이루어진 생물체 중의 하나인 대장균을 이용하고, 포스트 게놈 시대의 핵심 분야인 프로테옴 분석을 통해, 슈퍼 대장균을 개발하는데 성공했다.
李 교수는 올 2월 KAIST를 졸업한 한미정(韓美正, 29, 美 펜실베니아대학 박사후 연구원)박사와 함께 재조합단백질을 봉입체 형태로 과량 생산하는 대장균의 프로테옴 분석을 통해, 작은 열충격 단백질인 IbpA와 IbpB가 대장균 세포내에 존재하는 단백질 분해효소의 공격으로부터 재조합단백질을 보호한다는 것을 밝혀냈으며, 대장균 내의 작은 열충격단백질들을 증폭함으로서 재조합단백질을 봉입체 형태로 효율적으로 증산할 수 있음을 세계최초로 규명했다. 또한 대장균이 작은 열충격 단백질을 만들지 못하게 함으로써 주변세포질로써 단백질 분비생산 효율을 획기적으로 개선할 수 있다는 것을 밝혀냈다. 이는 단순히 작은 열 충격 단백질의 발현 정도만을 조정함으로써 대장균에서 의약품등 다양한 용도로 이용 가능한 재조합단백질의 생산을 원하는 형태로 자유자재로 조절 할 수 있음을 의미한다. 이것은 또한 이제까지의 프로테옴 연구 방식을 뛰어 넘어 시스템 생명공학의 관점에서 생물체의 프로테옴을 분석함으로써, 직접적인 생명공학제품의 생산성 증대를 가능하게 하는 새로운 연구방법을 제시하고 검증받았다는 점에서 그 의미가 크다.
2. 연구개발성과 및 향후계획
지난 해 휴먼 게놈 프로젝트가 완료된 것을 비롯하여, 최근 여러 생물 종에 대한 게놈 정보가 쏟아져 나오고 있다. 이번에 개발된 李 교수팀의 슈퍼 대장균을 이용하면, 이 방대한 게놈 정보들을 바탕으로 다양한 대상 단백질 생산을 세포질이나 주변세포질로 자유자재로 원하는 대로 생산이 가능하다. 이는 재조합 단백질 생산에 있어 하나의 획기적인 시스템이라는 평가가 지배적이다. 또한, 의약용과 산업용의 단백질 제품 시장은 전체 생물산업 시장의 60% 이상을 차지하고 있는 만큼, 그 파급효과는 엄청날 것으로 기대된다.
李 교수팀은 불과 몇 주 전, 한우의 반추위에서 분리한 맨하이미아 균의 게놈서열을 바탕으로, 시스템 생명공학을 접목하여 가상세포 모델을 구성하고, 이 가상세포를 이용한 컴퓨터 실험을 통해 맨하이미아의 대사특성과 성장특성, 그리고 대사산물의 생산특성을 밝혀, 이를 네이처 바이오테크놀로지에 게재한 바 있다. 이번 성과 또한 시스템 생명공학기법에 기반한 것으로써, 李 교수팀이 명실공히 시스템 생명공학 분야에서 세계적인 선두 그룹으로서의 입지를 확고히 할 것으로 기대된다.
李 교수는 “관련 시스템 생명공학 기법을 지속 발전 시켜 우리나라 생명공학 산업에 큰 기여를 하고 싶다.” 며 “재조합 단백질 연구분야에서 또 하나의 중요한 인프라 기술을 확보하게 되었으므로, 정부부처, 기업체 등과 긴밀히 협의, 산업화 방안을 강구하겠다 ” 고 밝혔다.
李 교수팀의 이번 연구 결과는 전 세계 특허출원 되었으며, 45년 전통의 공학부문 최고 생물공학 학술지인 바이오테크놀로지 바이오엔지니어링 (Biotechnology and Bioengineering)誌 온라인 판에 공개되었고, 표지 논문으로 오는 20일 발행되는 11월호에 게재된다.
**** 이상엽 교수는 1986년 서울대학교 화학공학과를 졸업하고, 1991년 미국 노스웨스턴대학교 화학공학과에서 석박사를 마쳤다. KAIST에서 약 10년 동안 대사공학에 관한 연구를 집중적으로 수행하여 그간 국내외 학술지논문 174편, proceedings논문 136편, 국내외 학술대회에서 542편의 논문을 발표하였고, 150여회의 기조연설이나 초청 강연을 한 바 있다.
Metabolic Engineering (Marcel Dekker 社 발간) 등 다수의 저서가 있다. 그간 118건의 특허를 국내외에 등록 혹은 출원하였는데, 미국 Elmer Gaden상과 특허청의 세종대왕상을 받는 등 기술의 우수성이 입증된 바 있다. 생분해성고분자, 광학적으로 순수한 정밀화학물질, DNA chip, Protein chip 등의 기술 개발에서 탁월한 연구 업적을 쌓았고, 최근에는 소위 omics와 정량적 시스템 분석기술을 통합하여 생명체 및 세포를 연구하는 시스템 생명공학분야 연구에 매진하고 있다. 李 교수는 그간 제1회 젊은 과학자상(대통령, 1998), 미국화학회에서 엘머 가든상 (2000), 싸이테이션 클래식 어워드 (미국 ISI, 2000), 대한민국 특허기술 대상 (2001), 닮고 싶고 되고 싶은 과학기술인 (2003), KAIST 연구대상 (2004) 등을 수상하였고, 2002년에는 세계경제포럼으로부터 아시아 차세대 리더로 선정되어 활동 중이다.
<용어설명>
1) 프로테옴(proteome) : 한 organism에 있는 전체 단백질을 의미 하는 용어로서, protein, 즉 단백질과 -ome, 전체를 의미하는 접두어의 합성어이다. 유전자(gene)와 유전자의 전체를 의미하는 genome에서 파생된 말로, 그 둘의 관계와 같은 개념이다.
2) 봉입체(inclusion body) : 세포 내에서 균질한 물질로 염색되는 단단한 구조물이며, 현미경으로 관찰 가능하다. 봉입체의 종류에는 바이러스가 모인 것과 바이러스 구성물질로 된 것이 모인 것, 그리고 바이러스의 성분과 관련이 없는 특유한 단백질로 이루어진 것 등 3종류로 나뉘는데, 재조합단백질 생산 시에는 단백질 과량 생산이 숙주세포의 대사에 장애를 가져와 형성되는 것이 대부분이다.
3) 작은 열 충격 단백질(small heat-shock protein) : 원핵생물, 진핵생물 모두가 가지고 있는 단백질로, 외부환경 변화에 따른 stress가 주어졌을 때 많이 발현 되며, 15~30kDa의 작은 분자량을 가지는 단백질이다. 이것은 분자량이 작은 단백질이지만, 여러 분자가 모여 200kDa~10MDa 정도의 큰 복합체를 형성하여, 세포내 protein들을 단백질 분해 효소에 의해 분해되는 것으로부터 막아주는 역할을 한다.
4) 시스템 생물학: 시스템 생물학 (Systems Biology)은 생물학, 시스템 과학, 전산학, 수학, 그리고 화학공학 등의 다양한 분야를 통합하여 세포와 같은 복잡한 시스템을 대상으로 세포 내 구성 요소들의 상호 연관관계 뿐 아니라 전체 대사 및 신호전달 체계를 정량적으로 모델링 및 시뮬레이션 함으로써 세포 전체의 상태 및 환경에 따른 상태 변화를 조사 예측하는 학문이다.
5) 시스템 생명공학: 시스템 생명공학 (Systems Biotechnology)는 이상엽교수와 전 세계적으로 몇 안 되는 연구진에서 개척하는 연구 분야로서, 시스템 생물학 기법과 기존의 대사공학 및 생물공정 기술을 총체적으로 결합한 연구 분야를 말한다.
우리 대학이 국가철도공단과 철도분야 미래성장을 위한 상호 협력체계 구축을 위한 업무협약을 9일(월) 체결했다고 밝혔다. 이번 협약식에는 이광형 총장과 이성해 국가철도공단 이사장이 참석했으며, 양 기관은 ▲ 철도산업 분야의 공동 연구과제 발굴 및 수행 ▲ 철도 전문인재 육성을 위한 교육과정 개설 ▲ 철도 기술 전문가 양성을 위한 인력 및 학술 교류 등 산학협력을 펼쳐 나가기로 약속했다. 협약 이행을 위해 우리 대학과 철도공단은 ‘철도 디지털 건설 및 유지관리 플랫폼 기술개발(디지털트윈)’과 ‘세계 최초 무정차 승하차 열차 시스템 연구’의 기획을 공동으로 준비 중에 있으며, 2025년부터 우리 대학 학위과정인 ‘미래도시석사’와 신규 비학위과정인 ‘철도 미래 신기술(디지털트윈, AI 등)’ 교육과정에 공단 직원이 참여하기로 했다. 이성해 국가철도공단 이사장은 “최근 AI 등 4차 산
2024-12-10열 에너지를 전기로 전환시키는 열전 소자는 버려지는 폐열을 활용할 수 있어 지속 가능하고 친환경적인 에너지 플랫폼으로 주목받고 있다. 한국 연구진이 우수한 신축성과 최고 수준 성능을 보이는 열전소자를 개발하여 웨어러블 소자를 위한 체온을 이용한 차세대 에너지 공급원으로의 가능성을 한층 더 앞당겼다. 우리 대학 생명화학공학과 문홍철 교수팀이 POSTECH 화학공학과 박태호 교수팀과 공동연구를 통해 열역학적 평형 조절을 통한 기존 N형 열전갈바닉 소자*성능 한계 극복 기술을 구현했다고 14일 밝혔다. *열전갈바닉 소자: 생성되는 전자 흐름의 방향에 따라 N형과 P형으로 구분 가능 네거티브(negative)를 의미하는 N형은 전자가 저온에서 고온 쪽으로, 포지티브(positive)를 의미하는 P형은 고온에서 저온 쪽으로 전자가 이동 열전 소자의 성능을 최대한 끌어올리기 위해 P형과 N형 소자의 통합이 필수적이다. 최근 우수한 성능을 지닌 P형 열전 소자에 대한 연구는 많이 진
2024-11-14스마트 의류와 같은 웨어러블 기기에서 활용될 수 있으며, 극한의 환경에서도 안정적인 열 에너지 성능을 유지할 수 있는 열전 소재가 한국 연구진에 의해 개발되었다. 기존 열전 소재 분야의 오랜 난제였던 열전 소재의 성능과 기계적 유연성 간의 딜레마를 획기적으로 해결하였고 상용화 가능성을 입증하기도 했다. 우리 대학 신소재공학과 정연식 교수와 기계공학과 박인규 교수 공동 연구팀이 국립한밭대학교 오민욱 교수, 한국기계연구원(원장 류석현) 정준호 박사 연구팀과 협업을 통해, 차세대 유연 전자소자를 위한 혁신적인 에너지 수확 솔루션인 ‘비스무트 텔루라이드(Bi2Te3) 열전 섬유’를 개발하는 데 성공했다고 21일 밝혔다. 열전 소재는 온도 차이가 있을 때 전압을 발생시켜 열에너지를 전기에너지로 변환하는 소재로, 현재 약 70%의 에너지가 폐열로 사라지는 상황에서 이러한 폐열을 회수해 재활용할 수 있는 지속가능한 에너지 물질로 주목받고 있다. 우리 주변의 열
2024-10-21우리 대학 학생 단체 아이시스츠(ICISTS)가 다음 달 7일부터 5일간 '아이시스츠 해커페어(ICISTS Hackafair) 2024'를 개최한다. '분열된 사회의 재연결(Reconnect Society)'을 주제로 열리는 이번 해커페어는 세계 각국 대학생 참가자들이 참신한 발상을 겨루는 '아이디어톤(Ideathon)'을 중심으로 진행한다. 아이시스츠가 새롭게 시도하는 '해커페어'는 아이디어를 경쟁적으로 구체화하는 해커톤(Hackathon)에서 한발 더 나아간 형태의 경연이다. 제시된 주제를 해결하기 위한 플랫폼·디바이스·교통수단·건축물·정책 등의 방안을 자유롭게 제안하는 '아이디어톤'을 3일간 진행한 뒤, 완성한 결과물을 박람회(Tech-Fair)에 곧바로 출품해 수익성과 지속 가능성까지 평가받아 승자를 가리는 방식이다. 참가자들은 디자이너·엔지니어·마케터로 역할을 나누고 팀을 구성한 뒤
2024-07-19기존의 반도체 소자에서 열 발생은 피할 수 없는데, 이는 에너지 소모량을 증가시키고, 반도체의 정상적인 동작을 방해하기 때문에 문제가 되며, 이에 열 발생을 최소화하는 것이 기존 반도체 기술의 관건이었다. KAIST 연구진이 이렇게 애물단지로 여겨지던 열을 오히려 컴퓨팅에 활용하는 방법을 고안하여 화제다. 우리 대학 신소재공학과 김경민 교수 연구팀이 산화물 반도체의 열-전기 상호작용에 기반하는 열 컴퓨팅(Thermal computing) 기술 개발에 성공했다고 25일 밝혔다. 연구팀은 전기-열 상호작용이 강한 모트 전이 (Mott transition) 반도체*를 활용했으며, 이 반도체 소자에 열 저장 및 열전달 기능을 최적화해 열을 이용하는 컴퓨팅을 구현했다. 이렇게 개발된 열 컴퓨팅 기술은 기존의 CPU, GPU와 같은 디지털 프로세서보다 1,000,000(백만)분의 1 수준의 에너지만으로 경로 찾기 등과 같은 복잡한 최적화 문제를 풀 수 있었다. *모트 전이 반도체:
2024-06-25