우리 대학 생명화학공학과 이상엽 특훈교수와 김현욱 교수의 초세대 협업연구실 공동연구팀이 딥러닝(deep learning) 기술을 이용해 효소의 기능을 신속하고 정확하게 예측할 수 있는 컴퓨터 방법론 DeepEC를 개발했다.
공동연구팀의 류재용 박사가 1 저자로 참여한 이번 연구결과는 국제학술지 ‘미국 국립과학원 회보(PNAS)’ 6월 20일 자 온라인판에 게재됐다. (논문명 : Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers)
효소는 세포 내의 생화학반응들을 촉진하는 단백질 촉매로 이들의 기능을 정확히 이해하는 것은 세포의 대사(metabolism) 과정을 이해하는 데에 매우 중요하다.
특히 효소들은 다양한 질병 발생 원리 및 산업 생명공학과 밀접한 연관이 있어 방대한 게놈 정보에서 효소들의 기능을 빠르고 정확하게 예측하는 기술은 응용기술 측면에서도 중요하다.
효소의 기능을 표기하는 시스템 중 대표적인 것이 EC 번호(enzyme commission number)이다. EC 번호는 ‘EC 3.4.11.4’처럼 효소가 매개하는 생화학반응들의 종류에 따라 총 4개의 숫자로 구성돼 있다.
중요한 것은 특정 효소에 주어진 EC 번호를 통해서 해당 효소가 어떠한 종류의 생화학반응을 매개하는지 알 수 있다는 것이다. 따라서 게놈으로부터 얻을 수 있는 효소 단백질 서열의 EC 번호를 빠르고 정확하게 예측할 수 있는 기술은 효소 및 대사 관련 문제를 해결하는 데 중요한 역할을 한다.
작년까지 여러 해에 걸쳐 EC 번호를 예측해주는 컴퓨터 방법론들이 최소 10개 이상 개발됐다. 그러나 이들 모두 예측 속도, 예측 정확성 및 예측 가능 범위 측면에서 발전 필요성이 있었다. 특히 현대 생명과학 및 생명공학에서 이뤄지는 연구의 속도와 규모를 고려했을 때 이러한 방법론의 성능은 충분하지 않았다.
공동연구팀은 1,388,606개의 단백질 서열과 이들에게 신뢰성 있게 부여된 EC 번호를 담고 있는 바이오 빅데이터에 딥러닝 기술을 적용해 EC 번호를 빠르고 정확하게 예측할 수 있는 DeepEC를 개발했다.
DeepEC는 주어진 단백질 서열의 EC 번호를 예측하기 위해서 3개의 합성곱 신경망(Convolutional neural network)을 주요 예측기술로 사용하며, 합성곱 신경망으로 EC 번호를 예측하지 못했을 경우 서열정렬(sequence alignment)을 통해서 EC 번호를 예측한다.
연구팀은 더 나아가 단백질 서열의 도메인(domain)과 기질 결합 부위 잔기(binding site residue)에 변이를 인위적으로 주었을 때, DeepEC가 가장 민감하게 해당 변이의 영향을 감지하는 것을 확인했다.
김현욱 교수는 “DeepEC의 성능을 평가하기 위해서 이전에 발표된 5개의 대표적인 EC 번호 예측 방법론과 비교해보니 DeepEC가 가장 빠르고 정확하게 주어진 단백질의 EC 번호를 예측하는 것으로 나타났다”라며 “효소 기능 연구에 크게 이바지할 것으로 기대한다”라고 말했다.
이상엽 특훈교수는 “이번에 개발한 DeepEC를 통해서 지속해서 재생되는 게놈 및 메타 게놈에 존재하는 방대한 효소 단백질 서열의 기능을 보다 효율적이고 정확하게 알아내는 것이 가능해졌다”라고 말했다.
이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제 및 바이오·의료기술 개발 Korea Bio Grand Challenge 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 인공지능 기반의 DeepEC를 이용한 효소 기능 EC 번호 예측
우리 대학이 28일 오후 대전 본원 정보전자공학동에서 '인공지능반도체대학원 개원식'을 열었다. 인공지능반도체대학원(책임교수 유회준)은 지난 5월 과학기술정보통신부의 인공지능반도체 분야 석·박사 고급인재 양성사업에 선정돼 설립됐다. 과기부로부터 연 30억 원, 대전광역시에서 연 9억 원을 지원 받는다. 올 가을학기부터 학사 운영을 시작해 12명의 석·박사 과정 학생이 재학 중이며, 향후 5년간 150명의 인재를 배출할 계획이다. 이날 열린 개원식에는 이광형 총장, 이장우 대전광역시장, 더불어민주당 조승래 의원(대전 유성구 갑), 강도현 과기정통부 정책실장, 전성배 정보통신기획평가원장, 방승찬 ETRI 원장과 산학 협력기업 관계자 등이 함께 참석해 현판 제막식을 진행했다. 유회준 책임교수는 "KAIST는 반도체 공정과 설계 등 전 분야에 걸쳐 세계적인 경쟁력을 갖춘 교육과 연구 여건이 완비되었다"라고 전했다.2008년부터 인공지능반도체 기술 개
2023-11-28우리 대학이 23일 오전 대전 본원에서 국제백신연구소(사무총장 제롬 김, International Vaccine Institute 이하 IVI)와 글로벌 백신 연구 협력을 위한 MOU를 체결했다. 이번 MOU는 의과학 및 생명과학 분야에서 세계적인 연구 역량을 자랑하는 우리 대학과 백신 관련 국제적 연구 능력과 글로벌 네트워크를 보유한 IVI가 협력해 세계 보건 증진에 이바지해야 한다는 공감대를 바탕으로 추진됐다. 양 기관은 ▴백신 면역반응 분석 프로젝트 ▴글로벌 헬스 파트너와 공동 연구 ▴의학 및 생명과학 분야 연구 및 교육 강화 ▴개발도상국의 보건의료 및 백신 접근성 향상 등 크게 네 가지 분야에서 협력한다.특히, 백신 면역반응 분석 프로젝트를 위해 우리 대학이 축적한 인체 면역반응 분석 기술 플랫폼이 활용된다. 소위 살인진드기 바이러스로 불리는 중증열성혈소판감소증 증후군 바이러스 백신, 한타바이러스 백신, 아데노바이러스 백신 등 현재 IVI가 개발하고 있는 다양한
2023-11-23최근 다양한 분야에서 인공지능 심층 학습(딥러닝) 기술을 활용한 서비스가 급속히 증가하고 있다. GPT와 같은 거대 언어 모델을 훈련하기 위해서는 수백 대의 GPU와 몇 주 이상의 시간이 필요하다고 알려져 있다. 따라서, 심층신경망 훈련 비용을 최소화하는 방법 개발이 요구되고 있다. 우리 대학 전산학부 이재길 교수 연구팀이 심층신경망 훈련 비용을 최소화할 수 있도록 훈련 데이터의 양을 줄이는 새로운 데이터 선택 기술을 개발했다고 2일 밝혔다. 일반적으로 대용량의 심층 학습용 훈련 데이터는 레이블 오류(예를 들어, 강아지 사진이 `고양이'라고 잘못 표기되어 있음)를 포함한다. 최신 인공지능 방법론인 재(再)레이블링(Re-labeling) 학습법은 훈련 도중 레이블 오류를 스스로 수정하면서 높은 심층신경망 성능을 달성하는데, 레이블 오류를 수정하기 위한 추가적인 과정들로 인해 훈련에 필요한 시간이 더욱 증가한다는 단점이 있다. 한편 막대한 훈련 시간을 줄이려는 방법으로 중복되
2023-11-02우리 대학이 다음 달 2일부터 4일까지 총 3일간 대전 본원 의과학연구센터(E7)에서 '뇌인지과학과 국제심포지엄'을 개최한다. 이번 심포지엄은 뇌인지과학과(학과장 정재승)의 설립 1주년을 기념하는 행사로 국내 뇌인지과학 분야의 저변확대와 차세대 인력양성 등을 논의하기 위해 마련됐다. 이를 위해, 미국 UC 버클리(UC Berkeley), 뉴욕대학교(New York University, 이하 NYU), 스위스 로잔연방공과대학교(EPFL) 등 유수 대학의 세계적 석학들과 구글 딥마인드(Google DeepMind), 아이비엠 리서치(IBM Research) 등에서 활발하게 활동 중인 뇌기반 인공지능연구자 등 13명의 해외 뇌과학자·뇌공학자를 초청했다. 또한, 국내 관련 분야의 리더들과 학술교류 및 공동연구를 논의하고, 우리 대학의 비전에 부합하는 향후 50년의 미래 연구 계획을 함께 모색할 예정이다. '뇌인지 분야의 난제'를 주제로 다루는 심포지엄 첫날에는 양단(Y
2023-10-27면역항암치료는 환자의 면역 시스템을 활성화해 암을 치료하는 혁신적인 3세대 항암 치료 방법으로 알려져 있다. 하지만 면역항암 치료제는 면역활성화에 의해 기존 항암제와는 구분되는 자가면역질환과 유사한 부작용을 유발할 수 있다는 새로운 문제가 제기됐다. 이러한 부작용은 심각한 경우 환자를 죽음에까지 이르게 할 수 있기에 부작용에 대한 연구가 절실한 상황에 놓여있다. 우리 대학 바이오및뇌공학과 최정균 교수팀과 서울아산병원 종양내과 박숙련 교수팀은 면역항암제 치료를 받은 고형암 환자에 대한 대규모 전향적 코호트를 구축하고, 다차원적 분석을 통해 면역항암제 부작용의 위험요인을 규명했다고 22일 밝혔다. 또한 인공지능 딥러닝을 이용해 치료 전 환자에게서 부작용이 나타날지를 예측할 수 있는 모델까지도 개발했다고 알렸다. 기존의 관련 연구들은 소규모로 진행이 되거나, 적은 수의 지표로 국한된 범위에 대해서만 행해졌다. 또한 수행된 연구들은 면역 관련 부작용을 위해 디자인된 연구 설계가
2023-06-22