본문 바로가기 대메뉴 바로가기

연구

모발 이식에 적용가능한 생체친화적 접착제 개발​
조회수 : 9971 등록일 : 2022-09-21 작성자 : 홍보실

(왼쪽부터) 화학과 서명은 교수, 화학과 이해신 교수

< (왼쪽부터) 화학과 서명은 교수, 화학과 이해신 교수 >

우리 대학 화학과 서명은 교수와 이해신 교수가 주도한 공동연구팀이 와인의 떫은맛 성분인 탄닌산(tannic acid)과 생체적합성 고분자를 섞어 생체친화적 접착제를 개발했다고 21일 밝혔다. 

탄닌산은 폴리페놀의 일종으로 과일 껍질, 견과류, 카카오 등에 많이 들어 있다. 접착력과 코팅력이 강해 다른 물질과 빠르게 결합하기 때문에, 와인을 마시면 떫은맛을 느끼는 이유는 탄닌산이 혀에 붙기 때문이다. 물에 녹는 고분자와 탄닌산을 섞으면 마치 젤리와 같이 끈적이는 작은 액체 방울을 말하는 코아세르베이트(coacervate)가 가라앉는 경우가 생기는데, 몸에 쓸 수 있는 생체적합성 고분자를 사용하면 독성이 낮은 의료용 접착제로 응용할 수 있다. 그러나 코아세르베이트는 근본적으로 액체에 가까워 큰 힘을 버틸 수 없어 접착력을 향상하는 데 한계가 있었다. 

연구팀은 두 종류의 생체적합성 고분자를 조합해 구조를 설계함으로써 접착력을 높일 수 있는 방법을 찾아냈다. 폴리에틸렌글리콜(polyethylene glycol), 이하 PEG)과 폴리락틱산(polylactic acid, 이하 PLA)은 모두 미국식품의약국(FDA)에서 인체 사용을 허가받은 물질이다. 안약, 크림 등에 많이 사용되는 PEG가 물에 잘 녹는 반면, 젖산(lactic acid)에서 유래한 바이오플라스틱으로 잘 알려진 PLA는 물에 녹지 않는다. 이들을 서로 연결한 블록 공중합체(block copolymer)를 만들고 물에 넣으면, 물에 녹지 않는 PLA 블록이 뭉쳐 미셀(micelle)을 만들고 PEG 블록이 그 표면을 감싸게 된다. 미셀과 탄닌산이 섞여 만들어지는 코아세르베이트는 단단한 PLA 성분으로 인하여 고체처럼 거동하며, PEG 대비 천 배 넘게 향상된 탄성 계수(elastic modulus)를 보여 접착 시 훨씬 강한 힘도 버틸 수 있다.

그림 1. (위) 폴리(에틸렌 글리콜)-폴리(락틱산) 이중블록 공중합체와 탄닌산을 물에서 섞어 만들어지는 생분해성 접착제의 원리. 블록 공중합체 미셀과 탄닌산 사이의 수소결합을 통해 노란색 코아세르베이트가 침전되고, 접착력을 나타낸다. 열처리를 거치면 수소결합이 재배열되어 접착력이 더욱 향상된다. (아래) 접착력 비교. 폴리(에틸렌 글리콜) 고분자 사용시(왼쪽)에 비해 블록 공중합체 사용시(중간) 10배 이상의 무게를 지탱할 수 있으며, 열처리 이후(오른쪽)에는 60배의 무게를 버틸 수 있다. 표시된 G’값은 재료의 탄성 계수를 나타낸다.

< 그림 1. (위) 폴리(에틸렌 글리콜)-폴리(락틱산) 이중블록 공중합체와 탄닌산을 물에서 섞어 만들어지는 생분해성 접착제의 원리. 블록 공중합체 미셀과 탄닌산 사이의 수소결합을 통해 노란색 코아세르베이트가 침전되고, 접착력을 나타낸다. 열처리를 거치면 수소결합이 재배열되어 접착력이 더욱 향상된다. (아래) 접착력 비교. 폴리(에틸렌 글리콜) 고분자 사용시(왼쪽)에 비해 블록 공중합체 사용시(중간) 10배 이상의 무게를 지탱할 수 있으며, 열처리 이후(오른쪽)에는 60배의 무게를 버틸 수 있다. 표시된 G’값은 재료의 탄성 계수를 나타낸다. >

연구팀은 나아가 마치 금속을 열처리하듯 온도를 올렸다 내리는 과정을 반복하면 물성이 백 배 이상 더욱 향상되는 것을 관찰했고, 이는 정렬된 미셀들과 탄닌산 사이의 상호작용이 점차 견고해지기 때문임을 알아냈다. 

연구팀은 피부 자극이 적고 체내에서 잘 분해되는 소재 특성을 이용, 모발의 끝에 이 접착제를 발라 피부에 심는 동물실험을 통해 모발 이식용 접착제로서 응용 가능성을 보였다. 탄닌산을 비롯한 폴리페놀의 접착력과 저독성에 주목해 의료용 접착제, 지혈제, 갈변 샴푸 등 다양한 응용 분야를 개척해 온 KAIST 이해신 교수는 모낭을 옮겨심는 기존의 모발 이식 방식이 여러 번 시행하기 어려운 한계를 보완하는 새로운 기술로 활용될 수 있을 것으로 기대했다.

그림 2. (위) 모낭을 포함하는 모발을 이식하는 기존의 모발 이식 방식(왼쪽) 대비 생분해성 접착제를 이용한 모발 이식 방식(오른쪽)의 개요. 모발 끝에 접착제를 도포한 후 피하주사를 통해 이식함으로써 피부에 고정하며, 반복 시술이 가능하다. (아래) 초기 동물실험 결과. 15가닥의 모발을 이식한 후 1일 경과한 상태에서 12가닥의 모발이 남아있다. 3가닥의 모발을 잡아당기면 몸 전체가 끌려올라오는 것으로 보아 피부에 견고하게 이식된 것을 알 수 있다. 접착제를 사용하지 않으면 모발이 남지 않으며, 열처리하지 않은 접착제의 경우 1/7 수준의 효율을 보였다.

< 그림 2. (위) 모낭을 포함하는 모발을 이식하는 기존의 모발 이식 방식(왼쪽) 대비 생분해성 접착제를 이용한 모발 이식 방식(오른쪽)의 개요. 모발 끝에 접착제를 도포한 후 피하주사를 통해 이식함으로써 피부에 고정하며, 반복 시술이 가능하다. (아래) 초기 동물실험 결과. 15가닥의 모발을 이식한 후 1일 경과한 상태에서 12가닥의 모발이 남아있다. 3가닥의 모발을 잡아당기면 몸 전체가 끌려올라오는 것으로 보아 피부에 견고하게 이식된 것을 알 수 있다. 접착제를 사용하지 않으면 모발이 남지 않으며, 열처리하지 않은 접착제의 경우 1/7 수준의 효율을 보였다. >

우리 대학 화학과 서명은 교수 연구팀의 박종민 박사(한국화학연구원 선임연구원)와 이해신 교수 연구팀의 박은숙 박사가 공동 제1 저자로 연구를 주도하고 우리 대학 화학과 김형준 교수 연구팀과 생명화학공학과 최시영 교수 연구팀이 협업한 이번 연구 결과는 국제학술지 '미국화학회지 Au(JACS Au)' 822로 온라인 게재됐다. (논문명 : Biodegradable Block CopolymerTannic Acid Glue) 

한편 이번 연구는 한국연구재단(NRF)의 보호연구사업과 선도연구센터지원사업(멀티스케일 카이랄 구조체 연구센터), 산업통상자원부의 생분해성 바이오 플라스틱 제품화 및 실증사업, 한국화학연구원 기관고유사업의 지원을 받아 진행됐다.

관련뉴스