우리 대학 전기및전자공학부 박현욱 교수 연구팀이 머신러닝 기반의 영상복원법을 이용해 자기공명영상장치(이하 MRI)의 영상 획득시간을 6배 이상 단축시킬 수 있는 기술을 개발했다.
이번 연구를 통해 MRI의 영상획득시간을 대폭 줄임으로써 환자의 편의성을 높일 뿐 아니라 의료비용 절감 효과를 기대할 수 있을 것으로 보인다.
권기남 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘메디컬 피직스(Medical Physics)’ 12월 13일자에 게재됐고 그 우수성을 인정받아 표지 논문에 선정됐다.
MRI는 방사능 없이 연조직의 다양한 대조도를 촬영할 수 있는 영상기기이다. 다양한 해부학적 구조 뿐 아니라 기능적, 생리학적 정보 또한 영상화 할 수 있기 때문에 의료 진단을 위해 매우 높은 빈도로 사용되고 있다.
하지만 MRI는 다른 의료영상기기에 비해 영상획득시간이 오래 걸린다는 단점이 있다. 따라서 환자들은 MRI를 찍기 위해 긴 시간을 대기해야 하고 촬영 과정에서도 자세를 움직이지 않아야 하는 등의 불편함을 감수해야 한다.
특히 길게 소요되는 영상획득시간은 MRI의 비싼 촬영 비용과 직접적인 연관이 있다.
박 교수 연구팀은 MRI의 영상획득시간을 줄이기 위해 데이터를 적게 수집하고 대신 부족한 데이터를 기계학습(Machine Learning)을 이용해 복원하는 방법을 개발했다.
기존의 MRI는 주파수 영역에서 여러 위상 인코딩을 하면서 순차적으로 한 줄씩 얻기 때문에 영상획득시간이 오래 걸린다. 획득 시간을 단축시키기 위해 저주파 영역에서만 데이터를 얻으면 저해상도 영상을 얻게 되고 듬성듬성 데이터를 얻으면 영상에서 인공물이 생기는 에일리어싱 아티팩트 현상이 발생한다.
이러한 에일리어싱 아티팩트를 해결하기 위해 다른 민감도를 갖는 여러 수신 코일을 활용한 병렬 영상법과 신호의 희소성을 이용한 압축 센싱 기법이 주로 활용됐다.
그러나 병렬 영상법은 수신 코일들의 설계에 영향을 받기 때문에 시간을 많이 단축할 수 없고 영상 복원에도 시간이 많이 걸린다.
연구팀은 MRI의 가속화에 의해 발생하는 에일리어싱 아티팩트 현상을 없애기 위해 라인 전체를 고려한 인공 신경망(Deep Neural Networks)을 개발했다.
연구팀은 위 기술과 함께 기존 병렬 영상법에서 이용했던 복수 수신 코일의 정보를 활용했고, 이 방식을 통해 직접적으로 영향을 주는 부분만을 연결해 네트워크의 효율성을 높였다.
기존 방법들의 경우 서브 샘플링 패턴에 많은 영향을 받았지만 박 교수 연구팀의 기술은 다양한 서브샘플링 패턴에 적용 가능하며 기존 방법대비 복원 영상의 우수함을 보였고 실시간 복원 또한 가능하다.
박 교수는 “MRI는 환자 진단에 필요한 필수 장비가 됐지만 영상 획득 시간이 오래 걸려 비용이 비싸고 불편함이 많았다”며 “기계학습을 활용한 방법이 MRI의 영상 획득 시간을 크게 단축할 것으로 기대한다”고 말했다.
이번 연구는 과학기술정보통신부의 인공지능 국가전략프로젝트와 뇌과학원천기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 국제 학술지 ‘메디컬 피직스 (Medical Physics)’12월호 표지
그림2. 제안하는 네트워크의 모식도
그림3. MRI의 일반적인 영상 획득 및 가속 영상 획득 모식도
우리 대학 전기및전자공학부 박사과정 노유지 학생(지도교수 황의종)이 ‘2022 마이크로소프트 리서치 PhD 펠로우’에 선정됐다. 마이크로소프트 리서치 PhD 펠로우십은 컴퓨터과학과 관련된 유망 연구 분야에서 우수한 성과를 낸 대학원생을 지원하는 장학 프로그램으로, 올해는 전 세계에서 36명이 선발됐으며, 한국 기관에서는 전기및전자공학부의 노유지 학생이 유일하게 선정됐다. 선정된 펠로우에게는 1만달러의 장학금과 마이크로소프트 각 분야 전문가 멘토와의 연구 토의, 인턴십 등의 혜택이 주어진다. 노유지 학생은 신뢰 가능한 인공지능(Trustworthy AI)을 위한 알고리즘 개발에 대한 탁월한 연구 성과를 인정받아 “머신러닝(Machine Learning)” 분야의 펠로우로 선정되었다. 특별히, 특정 집단을 차별하지 않는 공정한 인공지능 학습의 효율성을 획기적으로 높인 학습 방법론을 개발하고, 더 나아가 인공지능 모델의 공정
2022-10-21최근 다양한 분야에서 인공지능 심층 학습(딥러닝) 기술을 활용한 서비스가 급속히 증가하고 있다. 서비스 구축을 위해서 인공지능은 심층신경망을 훈련해야 하며, 이를 위해서는 충분한 훈련 데이터를 준비해야 한다. 특히 훈련 데이터에 정답지를 만드는 레이블링(labeling) 과정이 필요한데 (예를 들어, 고양이 사진에 `고양이'라고 정답을 적어줌), 이 과정은 일반적으로 수작업으로 진행되므로 엄청난 노동력과 시간적 비용이 소요된다. 따라서 훈련 데이터 구축 비용을 최소화하는 방법 개발이 요구되고 있다. 우리 대학 전산학부 이재길 교수 연구팀이 심층 학습 훈련 데이터 구축 비용을 최소화할 수 있는 새로운 데이터 동시 정제 및 선택 기술을 개발했다고 12일 밝혔다. 일반적으로 심층 학습용 훈련 데이터 구축 과정은 수집, 정제, 선택 및 레이블링 단계로 이뤄진다. 수집 단계에서는 웹, 카메라, 센서 등으로부터 대용량의 데이터가 정제되지 않은 채로 수집된다. 따라서 수집된 데이터에는
2022-10-12우리 대학 전기및전자공학부 박사과정 최유정 학생(지도교수 유민수)과 전산학부 박사과정 이하연 학생(지도교수 황성주)이 ‘2022 구글 PhD 펠로우’에 선정됐다. 구글 PhD 펠로우십은 컴퓨터과학과 관련된 유망 연구 분야에서 우수한 성과를 낸 대학원생을 지원하는 장학 프로그램으로 올해는 전 세계에서 61명이 선발됐다. 선정된 펠로우에게는 1만 달러의 장학금과 구글 각 분야 전문가 멘토와의 일대일 연구 토의, 피드백 등의 혜택이 주어진다. 최유정 학생은 시스템 및 네트워크(Systems and Networking) 분야에서 펠로우로 선정됐다. 최유정 학생은 머신러닝을 위한 컴퓨터 구조 및 시스템 설계 분야의 탁월한 연구 성과를 인정받아 선정됐다. 이하연 학생은 기계학습(Machine Learning) 분야에서 신경망 구조 탐색(Neural Architecture Search)과 메타학습(Meta-learning) 분야의 탁월한 연구성과들을 인정받아 선
2022-09-08우리 대학 문화기술대학원 박사과정 배준형, 석사과정 엄가람, 권하람, 이설희 학생팀(팀 지도교수: 도영임, 남주한)이 4월 30일에서 5월 6일간 미국 뉴올리언스에서 열린 2022 ACM CHI Student Game Competition <Transformative and Transgressive Play> 부문 우승자로 선정됐다고 밝혔다. HCI 분야에서 세계 최고 권위를 가진 ACM 인간-컴퓨터 상호작용 학회 (ACM Conference on Human Factors in Computing Systems, CHI) 트랙 중 하나인 Student Game Competition은 미래 게임 기술 개발 및 디자인에 영감을 줄 수 있는 새로운 아이디어를 선보이는 기회를 제공한다. 혁신적 인터페이스(Innovative Interface) 부문은 기존 관행을 뛰어넘는 상호작용 아이디어와 기술 진전을 다루며, 변혁적 및 초월적 플레이(Transformative and
2022-05-24우리 대학 전기및전자공학부 한동수 교수 연구팀이 머신러닝(기계학습)에 기반한 *유전체 정렬 소프트웨어를 개발했다고 12일 밝혔다. ☞ 유전체(genome): 생명체가 가지고 있는 염기서열 정보의 총합이며, 유전자는 생물학적 특징을 발현하는 염기서열들을 지칭한다. 유전체를 한 권의 책이라고 비유하면 유전자는 공백을 제외한 모든 글자라고 비유할 수 있다. 차세대 염기서열 분석은 유전체 정보를 해독하는 방법으로 유전체를 무수히 많은 조각으로 잘라낸 후 각 조각을 참조 유전체(reference genome)에 기반해 조립하는 과정을 거친다. 조립된 유전체 정보는 암을 포함한 여러 질병의 예측과 맞춤형 치료, 백신 개발 등 다양한 분야에서 사용된다. 유전체 정렬 소프트웨어는 차세대 염기서열 분석 방법으로 생성한 유전체 조각 데이터를 온전한 유전체 정보로 조립하기 위해 사용되는 소프트웨어다. 유전체 정렬 작업에는 많은 연산이 들어가며, 속도를 높이고 비용을 낮추는 방법에 관한 관
2022-04-17