
〈 김상욱 교수, 진형민 연구원 〉
우리 대학 신소재공학과 김상욱 교수 연구팀이 카메라의 플래시를 이용해 반도체를 제작하는 기술을 개발했다.
이 기술은 반도체용 7나노미터 패턴 기법으로 한 번의 플래시를 조사하는 것만으로 대면적에서 초미세 패턴을 제작할 수 있다. 향후 고효율, 고집적 반도체 소자 제작 등에 활용 가능할 것으로 기대된다.
진형민 연구원, 박대용 박사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 8월 21일자 온라인 판에 게재됐다.
4차 산업혁명의 주요 요소인 인공지능, 사물인터넷, 빅데이터 등의 기술에는 고용량, 고성능 반도체 소자가 핵심적으로 필요하다. 이러한 차세대 고집적 반도체 소자를 만들기 위해서는 패턴을 매우 작게 형성하는 리소그래피(Lithography) 기술의 개발이 필수적이다.
현재 관련 업계에서는 작은 패턴 제작에 주로 광 리소그래피(Photolithograph) 기술을 이용하고 있다. 하지만 이 기술은 10나노미터 이하의 패턴을 형성하기엔 한계가 있다.
고분자를 이용한 분자조립 패턴 기술은 공정비용이 저렴하고 10나노미터 이하 패턴 형성이 가능해 광 리소그래피를 대신할 차세대 기술로 각광받고 있다. 그러나 고온 열처리나 유독성 증기 처리에 시간이 많이 소요되기 때문에 대량 생산이 어려워 상용화에 한계가 있다.
연구팀은 고분자 분자조립 패턴 기술의 문제 해결을 위해 순간적으로 강한 빛을 내는 카메라 플래시를 활용했다. 플래시 빛을 이용하면 15 밀리 초(1밀리 초 : 천분의 1초) 내에 7나노미터의 반도체 패턴을 구현할 수 있고, 대면적에서 수십 밀리 초의 짧은 시간 내에 수 백도의 고온을 낼 수 있다.

연구팀은 이 기술을 고분자 분자 조립에 응용해 단 한 번의 플래시를 조사하는 것으로 분자 조립 패턴을 형성할 수 있음을 증명했다.
또한 연구팀은 고온 열처리 공정이 불가능한 고분자 유연 기판에도 적용이 가능함을 확인했다. 이를 통해 차세대 유연 반도체 제작에 응용할 수 있을 것으로 보인다.
연구팀은 카메라 플래시 광열 공정을 분자 조립 기술에 도입해 분자 조립 반도체기술의 실현을 앞당길 수 있는 고효율의 기술이라고 밝혔다.
연구를 주도한 김상욱 교수는 “분자조립 반도체 기술은 그 잠재성에도 불구하고 공정효율 제고가 큰 숙제로 남아 있었다”며 “이번 기술은 분자조립기반 반도체의 실용화에 획기적 해결책이 될 것이다”고 말했다.
신소재공학과 이건재 교수, 부산대학교 재료공학과 김광호 교수와의 공동으로 진행된 이번 연구는 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단과 글로벌프론티어사업의 지원을 받아 수행됐다.
□ 사진 설명
사진1. 플래시 광을 이용한 반도체 패턴 형성

사진2. 플래시 광을 이용한 분자조립 패턴 형성 모식도

사진3. 다양한 가이드 패턴을 이용한 자기조립 패턴 제어와 고분자 유연기판에서의 플래시 자기조립 패턴 형성

우리 대학 기계공학과(반도체시스템공학과 겸임) 김정원 교수 연구팀이 광주파수빗(optical frequency comb)을 색수차 공초점 및 분광 간섭계 기술과 결합해, 반도체 소자 후면에서 실리콘을 투과하여 내부 구조를 비파괴적으로 측정할 수 있는 새로운 광학 검사 기술을 개발했다. 최형수 박사과정이 제1저자로 참여하고 삼성전자 메모리사업부 계측기술팀과의 산학협력으로 수행된 이번 연구는 국제학술지 Light: Advanced Manufacturing 10월 29일 字에 게재됐다. (논문명: Backside illumination-enabled metrology and inspection inside 3D-ICs using frequency comb-based chromatic confocal and spectral interferometry) 최근 인공지능(AI)과 클라우드 컴퓨팅의 급성장으로 고성능·고효율 반도체 수요가 폭발적으로 증가하면서, 여러 칩을
2025-10-31우리 대학은 교내 연구·실험실 및 연구센터를 일반에 공개하는 `OPEN KAIST 2025' 행사를 10월 30일부터 이틀간 대전 본원 캠퍼스에서 개최한다고 23일 밝혔다. 2001년 시작돼 올해 13회째를 맞는 OPEN KAIST는 KAIST 공과대학(학장 이재우)이 격년제로 운영하는 대표 연구 공개 행사로, 시민이 연구 현장을 직접 체험하며 과학을 더 가깝게 만나는 프로그램을 지향한다. 올해는 16개 학과와 KAIST 우주연구원이 참여하며 △체험·시연 △랩 투어 △강연 △학과 소개 △성과 전시 등 5개 분야, 총 39개 프로그램이 운영된다. 특히 AI, 드론, 뇌과학, 원자력, 반도체 등 미래 핵심 분야를 직접 보고 배우는 과정이 대폭 강화됐다. 전산학부 한준 교수 연구실은 AI가 3차원 공간을 이해하고 가상 환경을 구성하는 기술을 소개한다. 참가자는 영상 속 사물이 재배치되는 과정을 시연으로 확인하고, 미래 사회에서 AI의 역할과 공간 인지 기
2025-10-23최근 인공지능(AI) 모델이 길고 복잡한 문장을 이해하고 처리하는 능력이 커지면서, 연산 속도와 메모리 효율을 동시에 높일 수 있는 새로운 반도체 기술의 필요성이 커지고 있다. 이런 가운데 우리 대학 ·국제연구진이 거대언어모델(LLM)의 추론 속도는 4배 높이면서 전력 소비는 2.2배 줄인 트랜스포머(Transformer)와 맘바(Mamba) 하이브리드 구조 기반의 AI 반도체 핵심 두뇌 기술을 세계 최초로 메모리 내부에서 직접 연산이 가능한 형태로 구현하는 데 성공했다. 우리 대학은 박종세 교수 연구팀이 미국 조지아 공과대학교(Georgia Institute of Technology) 및 스웨덴 웁살라 대학교(Uppsala University)와 공동연구를 통해, 차세대 인공지능 모델의 두뇌 역할을 하는 ‘AI 메모리 반도체(PIM, Processing-in-Memory)’ 기반 기술 ‘PIMBA’를 개발했다고 17일 밝
2025-10-17한국광전자공학회가 새롭게 출범하면서, 우리 대학 물리학과 조용훈 교수가 초대 회장으로 취임했다. 학회는 2007년과 2010년에 각각 설립된 LED·반도체조명학회와 한국광전자학회가 2017년에 통합해 활동해 온 한국LED·광전자학회를 모태로 한다. 미래 산업을 선도하는 첨단 융합 분야에서 광전자공학의 중요성이 최근 들어 크게 부각됨에 따라, 학회는 2025년 9월 ‘한국광전자공학회 (Korea Optoelectronics Society)’라는 새로운 명칭으로 출범하며 도약의 발판을 마련했다. 한국광전자공학회는 빛과 전자의 상호작용을 기반으로 한 광소자와 시스템분야의 첨단 연구와 기술 개발을 선도하는 학술 단체로서, ▲발광·디스플레이, ▲센서·에너지·수광, ▲전자·시스템·응용, ▲양자·광제어·신개념, ▲설계·평가·분석을 주
2025-10-14사람의 뇌는 단순히 신호를 주고받는 연결(시냅스)만 조절하는 게 아니라, 개별 신경세포가 ‘상황에 맞게 스스로 예민해지거나 둔해지는’ 적응 능력인 ‘내재적 가소성’을 통해 정보를 처리한다. 하지만 기존 인공지능 반도체는 이런 뇌의 유연함을 흉내 내기 어려웠다. KAIST 연구진이 이번에 이 능력까지 구현한 차세대 초저전력 반도체 기술을 개발해 관심을 모으고 있다. KAIST(총장 이광형)는 신소재공학과 김경민 교수 연구팀이 뉴런이 과거 활동을 기억해 스스로 반응 특성을 조절하는 ‘내재적 가소성(intrinsic plasticity)’을 모방한 ‘주파수 스위칭(Frequency Switching) 뉴리스터(Neuristor)’를 개발했다고 28일 밝혔다. ‘내재적 가소성’은 같은 소리를 여러 번 들으면 점점 덜 놀라거나, 반복된 훈련을 통해 특정 자극에 더 빨리 반응하게
2025-09-29