< (왼쪽부터) 전기및전자공학부 장민석 교수, 메나브데 세르게이 연구교수 >
우리 대학 국내외 연구자들과 협업을 통해 고도로 구속된 빛이 전파될 수 있는 새로운 플랫폼을 2차원 물질 박막을 통해 구현했다고 18일 밝혔다. 이 연구 결과는 향후 강한 빛-물질 상호작용에 기반한 차세대 광전자 소자 개발에 기여할 것으로 예상된다.
원자 한 층으로 이루어진 2차원 물질들이 여러 겹으로 쌓이게 되면 기존의 2차원 물질과 다른 특성을 보이게 된다. 이러한 방식으로 만들어진 결정을 반데르발스 결정이라고 한다. 포논-폴라리톤은 전기를 띠는 물질 속 이온의 진동이 전자기파에 결합된 형태를 말하며, 전자기장이 입사광의 파장에 대비해 극도로 응축된 형태를 띈다. 특히, 고전도도를 가지는 금속 위에 놓여진 반데르발스 결정에 생성되는 포논-폴라리톤은 응축성이 극대화된다는 결과가 최근 보고됐다. 금속 위의 유전체에서 빛의 응축성이 극대화되는 것은 폴라리톤 결정 속 전하가 영상 전하 영향으로 금속에 반사돼 `영상 포논-폴라리톤' 이라는 새로운 형태의 폴라리톤이 생성되기 때문이다.
영상 포논-폴라리톤의 형태로 전파되는 빛은 강한 빛-물질 상호작용을 유도할 수 있다는 장점이 있으나 금속 표면이 거칠 경우 생성이 억제돼, 영상 포논-폴라리톤에 기반한 광소자의 실현 가능성은 제한적인 것으로 평가받아왔다.
이러한 한계점을 돌파하고자, 첨단 제작 기술과 측정기술을 보유한 다섯 연구팀이 협업을 통해 단결정 금속 위 영상 포논 폴라리톤 측정에 성공했다.
우리 대학 전기및전자공학부 장민석 교수 연구팀은 높은 민감도를 가지는 주사 근접장 현미경(Scanning near-field optical microscope, SNOM)을 통해 단결정 금 위 63nm(나노미터) 두께의 육각형 질화붕소(hexagonal boron nitride, h-BN)에서 전파되는 쌍곡 영상 포논-폴라리톤(hyperbolic image phonon polariton, HIP)을 측정했다. 이 측정 결과를 통해 유전체 속에서 전파되는 영상 포논-폴라리톤은 중적외선 빛이 100배 응축된 형태임을 확인했다.
< 그림 1. 포논-폴라리톤을 초고화질로 측정하기 위해 사용되는 나노 팁 >
장민석 교수와 메나브데 세르게이(Sergey Menabde) 연구교수는 수-파장을 진행하는 HIP의 이미지를 얻었으며, 육각형 질화붕소(h-BN) 결정에서 전파되는 강한 구속 상태의 고차 HIP 신호를 세계 최초로 관측하는데 성공했다. 이 결과를 통해 연구진은 반데르발스 결정에서 포논-폴라리톤이 전파 수명 손실 없이 고응축 상태에 이를 수 있다는 것을 보였다.
이 실험 결과는 원자 수준으로 평편한 금 단결정이 육각형 질화붕소(h-BN)이 올라갈 기판으로 사용됐기 때문에 얻을 수 있었던 결과로 평편한 금 단결정은 표면 산란을 억제하며, 극도로 작은 전압 손실(ohmic loss)를 보유하기 때문에 중적외선 대역에서 영상 포논-폴라리톤이 손실없이 전파되기 위한 최적의 환경을 제공한다. 연구진에 의해 측정된 영상 포논-폴라리톤은 저손실 유전체에서 전파되는 포논-폴라리톤 대비 2.4배 응축된 형태와 비슷한 전파 수명을 지니기 때문에, 약 두 배의 성능 지표를 가진다.
실험에 사용된 원자 수준의 평편도를 가지는 금 단결정은 남덴마크대학교(University of South Denmark) 나노광학센터(Center for Nano Optics) 연구소의 모텐슨(N. Asger Mortensen) 교수 연구팀이 화학적으로 제작했다.
중적외선 파장 대역에는 수많은 유기물질의 흡수 스펙트럼이 위치하기 때문에 센서에 사용될 가능성이 높다. 하지만 현재의 상용화된 센서는 낮은 민감도를 가지고 있어, 유기물질은 매우 고농도의 상태에서만 검출된다. 하지만 고응축 상태의 포논-폴라리톤의 강한 빛-물질 상호작용을 이용할 시 한개의 유기 분자도 검출 할 수 있을 것으로 예상되며, 금 단결정에 전파되는 포논-폴라리톤의 긴 전파 수명 또한 검출 기능을 향상할 것으로 예측된다.
< 그림 2. 곧고 예리한 금 결정의 가장자리가 폴라리톤을 발사하는 그래프 >
장민석 교수 연구팀은 영상 포논-폴라리톤과 영상 그래핀 플라즈몬 사이의 유사성을 밝혀내기도 했다. 두 전파 모드는 모두 극도로 응축된 전자기장을 보이고, 짧아진 폴라리톤 파장에 무관하게 전파 수명이 일정했다. 이 측정 결과는 유전 박막으로 이루어진 저차원 폴라리톤에 대비해 영상 폴라리톤이 강점을 가진다는 것을 시사한다.
연구를 주도한 장민석 교수는 "이번 연구결과는 영상 폴라리톤, 특히, 영상 포논-폴라리톤의 장점을 잘 보여준다. 특히 영상 포논-폴라리톤이 갖는 저손실성과 강한 빛-물질 상호작용은 차세대 광전자 소자 개발에 응용될 수 있을 것으로 보인다. 연구팀의 실험 결과가 향후 메타표면, 광스위치, 광 센서 등의 고효율 나노광학 소자의 실용화를 앞당기는 데 도움이 되기를 바란다ˮ고 연구의 의의를 설명했다.
메나브데 세르게이 연구교수가 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)'에 7월 13일 字 게재됐다. (논문명: Near-field probing of image phonon-polaritons in hexagonal boron nitride on gold crystals)
한편 이번 연구는 삼성미래기술육성센터와 한국연구재단의 지원을 받아 진행되었으며, 한국과학기술연구원, 일본 문부과학성, 덴마크 빌룸(Villum) 재단의 지원을 받았다.
우리 대학 원자력및양자공학과 류호진 교수 연구팀이 금속 3D 프린팅을 활용해 소형모듈원자로(SMR) 안전성을 더욱 높일 수 있는 기술을 개발했다고 26일 밝혔다. SMR은 발전용량이 300메가와트(㎿) 수준인 소형 원자력발전소로 기존 원전보다 훨씬 좁은 땅에서 비슷한 수준의 전기를 생산할 수 있는 차세대 기술이다. 한국원자력연구원은 강석훈 재료안전기술개발부 책임연구원팀과 금속 분말 소재 전문 제조 기업인 하나에이엠티도 개발에 참여했다. 3D 프린팅 기술을 이용하면 원자로와 같이 구조가 복잡하면서 정밀한 가공이 요구되는 부품을 이음새 없이 설계‧제조할 수 있다. 원재료를 별도로 가공처리하지 않아고 되고 재료 손실도 거의 없어 비용을 아낄 수 있다는 장점도 있다. 때문에 최근 원전 부품 제조업에서 3D 프린팅 기술이 각광받는 추세다. 연구팀이 개발한 것은 SMR 압력용기 소재를 만들 수 있는 3D 프린팅 전용 금속 분말이다. 원자로 압력용기는 원자로 격납 건물 내부 정중앙에
2023-01-27우리 대학 공과대학이 '올해의 자랑스러운 공과대학 동문'으로 김한곤 한국수력원자력㈜ 중앙연구원장을 선정했다.김한곤 한국수력원자력㈜ 중앙연구원장은 원자력및양자공학과(석사 90, 박사 93)를 졸업했다. 1997년 한국수력원자력㈜ 중앙연구원에서 재직하면서 한국형 신형원자로인 APR1400의 핵심 기술인 핵증기공급계통(Nuclear Steam Supply System) 및 안전 계통 개발 책임을 맡았다. 김 원장은 원자로용기 직접 주입 방식의 안전계통 및 피동 유량조절 기술 등 고유한 기술을 개발했으며, 국내 최초로 표준설계인가를 획득해 신형원자로의 국내 건설 및 수출에 발판을 마련했다. 이후, 순수 국내 기술로 개발된 3세대+ 원전인 APR+의 주요 핵심기술 개발 총괄 책임자를 역임했다. 세계 최초로 피동보조급수계통(Passive Aux. Feedwater System)을 신형원전에 적용하고, 국내 허가를 받아 미국에 이어 세계 두 번째로 피동계통을 상용화하는 데 기여했다.
2022-12-02고에너지 밀도를 갖는 리튬이차전지 개발에 대한 수요가 폭발적으로 증가하면서, 실리콘 기반 음극 개발에 관한 연구가 활발히 이뤄지고 있다. 실리콘 활물질은 기존 음극 활물질인 흑연 대비 높은 용량 값(4200 mAh/g)을 가지고 있어, 고에너지 밀도를 가지는 리튬이차전지용 음극의 유력한 후보로 자리 잡고 있다. 하지만 충전 및 방전 간 400%에 달하는 높은 부피 팽창/수축률이 실리콘 활물질의 상업화를 방해하고 있다. 실리콘 기반 음극의 급격한 부피 변화는 특히 전극 내 전자 전달 시스템에 큰 악영향을 미치고 있으며, 이를 보완하기 위해 다양한 도전재 시스템을 적용하는 연구가 활발히 진행 중이다. 전극 내 전자 전도 채널의 확보는, 활물질 내 균등한 전기화학 반응을 유발하기 위해 필수적이지만, 이를 나노스케일 공간 분해능을 갖고 영상화하는 방법론에 관해서는 많은 연구가 진행되지 않은 실정이다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 LG에너지솔루션과 협업해, 나노스케
2022-11-08우리 대학 물리학과 양용수 교수, 화학과 한상우 교수, 기계공학과 유승화 교수 공동연구팀이 한국기초과학지원연구원, 한국화학연구원과의 공동연구 및 미국 로런스 버클리 국립연구소(Lawrence Berkeley National Laboratory), 영국 버밍엄 대학교(University of Birmingham)와의 국제 협력 연구를 통해 팔라듐-백금 코어-쉘 구조 나노입자의 3차원 계면구조와 그 특성을 규명했다고 3일 밝혔다. 코어-쉘(core-shell) 구조 나노입자는 서로 다른 물질로 이루어진 코어(알맹이)와 쉘(껍데기)이 맞붙은 형태로 합성된 나노물질이다. 코어와 쉘 간의 경계면에서 코어를 이루는 물질과 쉘을 이루는 물질 간의 원자 간격 차이로 인해 원자 구조의 변형이 일어나며, 이 변형을 제어함으로써 나노입자의 광학적, 자기적, 촉매적 성질들을 변화시킬 수 있다. 특히 수소연료전지 제작에 필수적으로 사용되는 촉매에 값비싼 백금이 주로 사용되는데, 코어-쉘 구조를
2022-11-03우리 대학 생명과학과 송지준 교수 연구팀이 초저온 전자 현미경(cryo-Electron Microscopy)을 이용해 호르몬 조절 물질인 소마토스타틴(somatostatin)과 그 수용체인 소마토스타틴 리셉터 2(Somatostatin Receptor 2, 이하 SSTR2) 복합체의 3차원 원자 해상도 구조를 규명해 호르몬 조절 메커니즘을 밝혔다고 6일 밝혔다. 소마토스타틴은 성장호르몬의 분비를 억제하는 작용이 있는 호르몬으로 내장과 뇌에 관련된 호르몬이며, 호르몬 분비 조절, 세포의 증식, 뇌 신경 물질 전달에 관한 작용을 한다. 송 교수 연구팀은 연세대학교 이원태 교수 연구팀, 피씨지-바이오텍 연구팀과의 공동연구를 통해, 소마토스타틴과 결합해 다양한 호르몬의 분비를 억제하는 SSTR2 복합체 구조를 3차원 원자 해상도로 초저온 전자현미경을 이용해 규명하고, 소마토스타틴이 SSTR2를 통해 호르몬 분비를 억제하는 메커니즘을 규명했다. 이러한 연구 결과는 호르몬 분비의 이상에
2022-05-09