〈 조 광 현 교수 〉
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 간암 약물 치료의 효과를 높이는 새로운 방법을 찾아냈다. 특히 이번 연구는 바이오분야의 4차 산업혁명을 견인하고 있는 IT와 BT의 융합연구인 시스템생물학(Systems Biology) 연구로 이뤄졌다.
서울대병원 내과 윤정환 교수팀과 공동연구를 통해 이루어낸 이번 연구 결과는 국제 간 전문지인 헤파톨로지(Hepatology)에 게재됐다.
이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 바이오의료기술개발사업과 중견연구자지원사업의 지원을 받아 수행됐다.
간암은 전 세계적으로 남성에게는 다섯 번째, 여성에게는 일곱 번째로 발생률이 높은 암이며 암 사망원인의 두 번째를 차지한다. 특히 우리나라의 간암 사망률은 인구 10만 명 당 28.4명으로 경제협력개발기구(OECD) 국가 중 압도적인 1위이며 2위인 일본의 2배에 이르고 있다.
우리나라에서만 간암 환자가 매년 평균 1만 6000명이 새로 발생하고 있지만 5년 생존율이 12%에 미치지 못한다. 국가암정보센터에 따르면 지난해 암으로 사망한 사람 가운데 폐암이 1만 7399명으로 가장 많았고 간암은 1만 1311명으로 그 뒤를 이었다.
간암은 우리나라의 암 가운데 사회적 비용이 1위인 암이다. 그 이유는 다른 암에 비해 사망자가 많고 더 젊은 나이(40, 50대)에 사망하기 때문이다. 이에 부작용이 적고 생존율을 높여줄 수 있는 새로운 치료법 개발이 시급한 실정이다.
간암의 치료로는 수술 및 색전술, 약물 치료가 있지만 수술이 어려운 진행성 간암에서는 치료 방법이 극히 제한적이다.
진행성 간암의 표적 항암제로 소라페닙(Sorafenib)이 유일하게 승인돼 임상에서 쓰이고 있는데 국내에서만 매년 200억 원 이상 처방되고 있지만 일부 환자에서만 효능을 나타내며 또한 대부분의 경우 약제 내성이 발생한다.
소라페닙은 말기 간암 환자의 생존 기간을 약 3개월 정도 밖에 늘리지 못하지만 다국적 제약회사에 의해 개발된 많은 후발주자 약물들이 그 효과를 뛰어 넘는데 실패했다.
소라페닙은 다중타겟을 치료표적으로 하여 그 작용 기전이 모호하고 따라서 약제의 내성기전 또한 아직 잘 알려져 있지 않다.
조광현 교수가 이끈 융합 연구팀은 소라페닙 작용 및 내성 기전을 규명하기 위해 소라페닙을 간암 세포에 처리하였을 때 세포내 분자 발현이 변화하는 것을 분석했다.
이를 통해 암세포가 소라페닙에 대항하는 기전을 알아냈고 시스템생물학적 분석을 실시하여 암세포내 단백질 이황화 이성질화 효소(protein disulfide isomerase, PDI)가 암세포가 소라페닙에 대항하는데 핵심적 역할을 하는 것을 발견했으며 이 효소를 차단했을 때 소라페닙의 효능이 훨씬 증가함을 관찰했다.
공동연구를 수행한 서울대병원 내과 윤정환 교수 연구팀은 쥐를 이용한 동물실험에서 소라페닙과 단백질 이황화 이성질화 효소 차단제를 같이 처리하면 간암 증식 억제에 시너지가 있음을 관찰하였고 소라페닙에 저항성을 가진 간암 환자의 조직에서 이 효소가 증가되어 있음을 관찰하여, 향후 임상 적용을 위한 가능성을 확인하였다.
조광현 교수는 “세포내 중요한 역할을 담당하는 분자들은 대부분 복잡한 조절관계 속에 놓여있기 때문에 기존의 직관적인 생물학 연구로 그 원리를 밝히는 것은 근본적인 한계가 있다. 이번 연구는 IT와 BT의 융합연구인 시스템생물학으로 그 한계를 극복할 수 있음을 보여주는 대표적인 사례로, 특히 암에 대한 표적 치료제 작용을 네트워크 차원에서 분석하여 내성을 극복할 수 있는 새로운 치료법을 개발할 수 있는 가능성을 제시하였다”고 말했다.
□ 사진 설명
사진1. 간암세포를 이용한 세포실험을 이용해 시뮬레이션 결과를 확인
사진2. 구축된 ER stress 네트워크를 이용한 네트워크 분석 및 컴퓨터 시뮬레이션 결과
사진3. 간암 세포가 소라페닙에 반응할 때 전사체 변화를 분석하여 ER stress 반응이 주요하게 나타남을 발견하게 된 ER stress 네트워크 모델
우리 대학이 한국의 혁신 창업생태계를 한 단계 끌어올린 딥테크 스타트업의 우수 사례를 발굴하는 '2024 대한민국 혁신창업상' 수상기업을 11일 발표했다. '대한민국 혁신창업상'은 혁신적인 기술과 창의적인 아이디어로 무장한 스타트업이 우리나라의 경제를 이끌어갈 미래 성장동력으로 자리매김할 수 있도록 격려하기 위해 마련됐다. 우리 대학과 서울대, 중앙홀딩스가 협력하고 과학기술정보통신부가 후원하며, 시상식은 11일 서울대학교에서 개최된 '혁신창업국가 대한민국 국제심포지엄 2024'에서 진행됐다. 2022년 제정 후 3회차를 맞은 올해는 과학기술정보통신부 장관상을 받는 스탠다드에너지 주식회사와 메티스엑스(주)를 포함해 6개 기업이 수상의 영예를 안았다. 스탠다드에너지는 혁신적인 바나듐 이온 배터리를 개발해 친환경 에너지 산업을 선도하고 있으며 높은 에너지 효율, 배터리 수명, 안전성, 재활용성을 앞세워 세계 시장에서 입지를 넓혀갈 예정이다. 메티스엑스(주)는 CXL 기
2024-09-11과학계에서는 지구 온난화와 같은 기후 변화 등 인류 활동으로 초래되어 오래도록 흔적을 남기는 지구 환경의 변동을 지칭하기 위해 ‘인류세’라는 지질시대 용어를 제안한 바 있다. 우리 대학은 국제 연구단체인 '인류세실무단'의 유일한 한국인 위원인 박범순 과학기술정책대학원 교수를 주축으로 '제2차 국제 인류세 심포지엄'을 개최하고 2일 오후 대전 본원에서 개막식열었다. '인류세를 투사하기: 다학문적 접근'을 주제로 열리는 이번 심포지엄에서는 개막식 당일을 포함해 3일간 인류세에 관한 토론과 미디어 아트 특별전이 이어진다. 산업 발전 이후 인간의 활동은 지구 시스템을 유례없이 빠른 속도와 거대한 규모로 변화시키고 있지만, 우리 사회의 발전상은 이를 감당하기엔 모자란 실정이다. 우리 대학은 인류세의 개념을 통해 이러한 변화를 감지하는 과학적 방법을 탐구하고, 인간뿐 아니라 비인간 존재와도 함께 살아가는 방식을 논의하기 위해 이번 심포지엄을 준비했다. 개막
2024-09-03우리 대학 의과학대학원 정원일 교수 연구팀이 종양 관련 대식세포(Tumor-associated macrophage; TAM)와 간 성상세포(Hepatic stellate cell; HSC)의 대사성 상호작용을 통한 세포독성 CD8+ T세포의 증식 억제를 간암 병인 기전으로 규명하고 이를 새로운 간암 치료 표적으로 제시했다고 8일 밝혔다. 정원일 교수 연구팀은 대식세포 침윤에 중요한 역할을 하는 신호 전달 분자인 CX3CR1 케모카인을 발현하는 특정 종양 관련 대식세포가 섬유화로 진행된 암 주변 조직 내로 이동해 활성화된 간 성상세포와 상호작용함을 확인했다. 이때, 활성화된 간 성상세포에서 분비되는 레티노익산이 종양 관련 대식세포의 아르기나아제 1(Arginase-1, 이하 Arg1) 발현을 유도해 아르기닌의 대사를 촉진함으로 세포독성 CD8+ T세포의 증식이 억제되며 간암 발병이 촉진됨을 밝혔다. 특히, 간암 환자의 간 조직을 이용한 단일세포 유전체 분석에서 종양 미세환
2024-08-08공과대학 융복합연구센터(센터장 이재우) 지능융합팀 이채석 책임연구원이 5일 대전광역시 바이오 혁신신약 특화단지 선정에 기여한 공로를 인정받아 유공표창인 '대전광역시장상'을 받았다. 지능융합팀 팀장이자 대전시-KAIST 전략사업연구센터에 겸직 중인 이채석 책임연구원은 2024년 산업통상자원부의 '대전광역시 바이오 혁신신약 특화단지 선정'을 위한 워킹그룹에 참여해 특화단지 선정을 위한 전략을 수립하고 육성계획서 및 발표 자료 제작 실무와 바이오 신약 연구자 간 네트워킹 등의 업무를 수행했다. 특히, 우리 대학 바이오 신약 연구자 네트워킹 구축과 기술 기획에 주력해 대전광역시가 신약 개발의 최적지로 평가받을 수 있는 전략을 수립하고 혁신신약 창출 및 4대 초격차 기술 기반을 준비한 공로를 높게 평가받았다. 이채석 책임연구원은 "KAIST와 대전광역시, 대전테크노파크가 힘을 합친 원팀이 밤낮을 가리지 않는 추진력을 발휘해 이번 특화단지 유치 성과를 낼 수 있었으며, 대전
2024-08-072021년 서울국제포럼과 KAIST가 공동 개최한 “글로벌 복합위기와 4차 산업혁명의 대전환기, 탄력성장의 도전과 기회” 포럼에서 KAIST 이상엽 특훈교수는 우리나라가 미래 국가경쟁력을 확보하기 위해서는 대체 불가 기술 (non-fungible technology; NFT)을 확보해야 한다고 처음으로 제시한 바 있다. 기후 변화의 심각성에 연간 약 1.1억 톤의 식품 폐기물을 포함한 다양한 유기 폐기물들, 그리고 이산화탄소도 바이오 제조를 위한 원료로 사용하도록 대체 불가능한 바이오기술(Bio-NFT)로 활용하는 것이 이제 선택이 아닌 필수가 됐다. 우리 대학 생명화학공학과 이상엽 특훈교수가 기술 혁신, 원료 공급 최적화 및 적절한 인프라를 통해 바이오 제조의 확장을 포함한 경쟁력 확보 전략 수립에 대한 논문을 네이처 화학공학지(Nature Chemical Engineering)에 월드뷰(Worldview)에 7월 22일 자로 제시했다고 24일 밝혔다.
2024-07-25