< (왼쪽부터) 전기및전자공학부 유회준 교수, 한동현 박사과정 >
우리 대학 전기및전자공학부 유회준 교수 연구팀이 인공지능의 실시간 학습을 모바일 기기에서 구현, 고정확도 인공지능(AI: Artificial Intelligent) 반도체*를 세계 최초로 개발했다고 23일 밝혔다.
* 인공지능 반도체 : 인식·추론·학습·판단 등 인공지능 처리 기능을 탑재하고, 초지능·초저전력·초신뢰 기반의 최적화된 기술로 구현한 반도체
연구팀이 개발한 인공지능 반도체는 저비트 학습과 저지연 학습 방식을 적용해, 모바일 기기에서도 학습할 수 있다. 특히 이번 반도체 칩은 인공지능의 예상치 못한 성능 저하를 막을 수 있는 실시간 학습 기술을 성공적으로 구현했다.
< 그림 1. HNPU 인공지능 반도체 칩 >
전기및전자공학부 한동현 박사과정이 제1 저자로 참여한 이번 연구는 지난 6월 12일부터 15일까지 인천 연수구 송도 컨벤시아에서 개최된 국제 인공지능 회로 및 시스템 학술대회(AICAS)에서 발표됐으며 응용 예시를 현장에서 시연했고, 최우수 논문상과 최우수 데모상을 모두 석권해 그 우수성을 널리 알렸다. (논문명 : A 0.95 mJ/frame DNN Training Processor for Robust Object Detection with Real-World Environmental Adaptation (저자: 한동현, 임동석, 박광태, 김영우, 송석찬, 이주형, 유회준))
인공지능 (AI) 반도체 기술을 망라하는 국제 학술 대회 ‘AICAS 2022’는 인공지능 반도체 분야 세계 최고 권위를 가진 IEEE(미국 전기 전자 기술자 협회)학회로 평가받으며, 삼성, SK를 필두로, 한국전자통신연구원(ETRI), 엔비디아(NVIDIA), 케이던스(Cadence) 등 국내외 저명한 기업과 기관 등이 참석해 인공지능 반도체 회로와 시스템 전 분야, 인공지능 반도체와 관련된 연구성과를 공유하는 행사다.
< 그림 2. HNPU 활용 물체 검출 시스템 사진 >
< 그림 3. 기존 인공지능 플랫폼과의 성능 비교 사진 >
기존 인공지능은 사전에 학습된 지능만으로 추론을 진행했기 때문에 학습하지 않은 새로운 환경 혹은 물체에 대해서는 물체 검출이 어려웠다. 하지만 유회준 교수 연구팀이 개발한 실시간 학습은 추론만 수행하던 기존 모바일 인공지능 반도체에 학습 기능을 부여함으로써, 인공지능의 지능 수준을 크게 끌어올렸다.
유 교수팀의 새로운 인공지능 반도체는 사전에 학습한 지식과 애플리케이션 수행 중에 학습한 지식을 함께 활용해 고정확도 물체검출 성능을 보였다. 특히 유회준 교수 연구팀은 렌즈가 깨지거나, 기계 오류로 인한 인공지능의 예상치 못한 정확도 감소도 자동으로 인지하고 이를 실시간 학습을 통해 보정, 기존 인공지능의 문제점을 해결했다.
유 교수팀은 실시간 학습 기능에 더해, 모바일 기기에서 저전력으로 학습이 가능할 수 있도록, 저비트 인공지능 학습 방법, 직접 오류 전사 기반 저지연 학습 방식을 제안, 이를 최적화할 수 있는 반도체(HNPU) 와 응용 시스템을 모두 개발했다.
저전력, 실시간 학습을 수행할 수 있는 모바일 인공지능 전용 반도체, HNPU는 다음과 같이 6가지 핵심 기술이 도입됐다.
○ 확률적 동적 고정 소수점 활용 저비트 학습 방식 (SDFXP: Stochastic Dynamic Fixed-point Representation)
- 동적 고정 소수점에 확률적 표현을 결합하고 확률적 반올림을 도입하여 인공지능 학습에 필요한 비트 정밀도를 최소화 할 수 있는 방법
○ 레이어별 자동 정밀도 검색 알고리즘 및 하드웨어 (LAPS: Layer-wise Adaptive Precision Scaling)
- 학습의 난이도를 자동으로 파악하고 심층신경망의 레이어별로 최적의 비트수를 자동으로 찾아주는 알고리즘 및 이를 가속하는 하드웨어
○ 입력 비트 슬라이스 희소성 활용* (ISS: Input Slice Skipping or Bit-slice Level Sparsity Exploitation)
- 데이터를 이진수로 표현했을 때 중간중간 나타나는 ‘0’ 비트를 활용하여, 데이터 처리량을 높이는 방식
○ 내재적 순수 난수 생성기 (iTRNG: Intrinsic True Random Number Generator)
인공지능 연산을 활용한 순수 난수 생성기를 설계, 데이터의 암호화 및 확률적 반올림을 구현
○ 다중 학습 단계 할당을 통한 고속 학습 알고리즘 및 하드웨어 (MLTA: Multi Learning Task Allocation & Backward Unlocking)
기존 역전파 (Back-propagation) 알고리즘에서 탈피해, 직접 오류 전사를 통한 저지연 학습 구현
○ 실시간 인공지능 학습 기반 자동 오류 검출 기능 저하 보정 시스템 개발 (Real-time DNN Training based Automatic Performance Monitor and Performance Recovery System)
평상시 물체 검출 결과를 주기적으로 모니터링하면서, 갑작스러운 확률 변화를 자동으로 인식, 정확도 저하를 보정하기 위해 실시간 학습을 적용
* 희소성 활용 (Sparsity Exploitation) : 심층 신경망 모델의 연산은 수많은 곱셈누적(MAC: Multiply-And-Accumulate)연산의 연속이다. 연산자에 0이 존재할 시, 굳이 연산을 해보지 않아도 결과는 0임을 알기에 이를 뛰어넘는 방식으로 연산 속도를 높이는 방식.
이러한 기술을 사용해 HNPU는 저전력 물체검출을 구현하여, 다른 모바일 물체검출 시스템과 비교해 75% 높은 속도, 44% 낮은 에너지 소모를 달성하면서도, 실시간 학습으로 고정확도 물체검출을 개발해 주목을 받았다.
< 그림 4. HNPU 활용 물체 검출 시스템의 성능 비교 사진 >
< 그림 5. HNPU 활용 물체 검출 예시 >
연구팀은 HNPU의 활용 예시로 카메라 렌즈가 깨지거나, 기계 오류, 조명, 밝기 변화로 인공지능의 추론 능력이 떨어졌을 때, 실시간 학습을 통해 다시 정확도를 높이는 고정확도 물체검출 시스템을 개발했다. 이는 이후 자율 주행, 로봇 등 다양한 곳에 활용될 것으로 기대된다.
특히 연구팀의 HNPU 연구는 2022 국제인공지능회로및시스템학술대회(AICAS 2022)에서 발표돼, 최우수 논문상과 최우수 데모상을 모두 석권하여 그 우수성을 널리 알렸다.
< 그림 6. AICAS 2022 학회장 HNPU 데모 세팅 사진 >
< 그림 7. AICAS 2022 학회장 HNPU 데모 발표 현장 >
< 그림 8. AICAS 2022 학회장 HNPU 발표 사진 >
< 그림 9. AICAS 2022 최우수 논문상 및 취우수 데모상 수상 사진 >
연구를 주도한 KAIST 전기및전자공학부 유회준 교수는 “현재 인공지능은 사전에 학습한 지식만으로 주어진 문제를 해결하고 있으며, 이는 변화하는 환경과 상황에 맞춰 계속 학습하는 인간의 지능과 뚜렷한 차이를 보인다”라며 “이번 연구는 실시간 학습 인공지능 반도체를 통해 인공지능의 지능 수준을 사람 수준으로 한층 더 끌어올리는 연구”라고 본 연구의 의의를 밝혔다.
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 인공지능 기반 약물 상호작용 예측 기술을 고도화해, 코로나19 치료제로 사용되는 팍스로비드(PaxlovidTM) 성분과 기존 승인된 약물 간의 상호작용 분석 결과를 논문으로 발표했다고 16일 밝혔다. 이번 논문은 국제저명학술지인 「미국국립과학원회보 (PNAS)」誌’ 3월 13일자 온라인판에 게재됐다. ※ 논문명 : Computational prediction of interactions between Paxlovid and prescription drugs ※ 저자 정보 : 김예지(한국과학기술원, 공동 제1 저자), 류재용(덕성여자대학교, 공동 제1 저자), 김현욱(한국과학기술원, 공동 제1 저자), 이상엽(한국과학기술원, 교신저자) 포함 총 4명 연구팀은 이번 연구에서 2018년에 개발한 인공지능 기반의 약물 상호작용 예측 모델인 딥디디아이(DeepDDI)를 고도화한 딥디디아이2(DeepDDI2)를 개발했다
2023-03-16우리 대학 전기및전자공학부 유회준 교수 연구팀이 실사에 가까운 이미지를 렌더링할 수 있는 인공지능 기반 3D 렌더링을 모바일 기기에서 구현, 고속, 저전력 인공지능(AI: Artificial Intelligent) 반도체*인 메타브레인(MetaVRain)’을 세계 최초로 개발했다고 7일 밝혔다. * 인공지능 반도체 : 인식·추론·학습·판단 등 인공지능 처리 기능을 탑재하고, 초지능·초저전력·초신뢰 기반의 최적화된 기술로 구현한 반도체 연구팀이 개발한 인공지능 반도체는 GPU로 구동되는 기존 레이 트레이싱 (ray-tracing)* 기반 3D 렌더링을 새로 제작된 AI 반도체 상에서 인공지능 기반 3차원으로 만들어, 기존의 막대한 비용이 들어가는 3차원 영상 캡쳐 스튜디오가 필요없게 되므로 3D 모델 제작에 드는 비용을 크게 줄이고, 사용되는 메모리를 180배 이상 줄일 수 있다. 특히 블렌더(Blend
2023-03-07우리 대학 김정원 교수 연구팀이 반도체 소자 내의 미세 구조와 동적 특성을 고해상도로 측정할 수 있는 초고속 카메라 기술을 개발하였다고 밝혔다. 기존에는 볼 수 없었던 반도체 소자 내에서의 빠르고 불규칙적인 복잡한 움직임을 이제 초고속 카메라로 관측할 수 있게 되었다. 기계공학과 나용진 박사가 제 1저자로 참여하고 기계공학과 유홍기, 이정철 교수팀 및 한국표준과학연구원(KRISS) 서준호, 강주식 박사팀이 참여한 공동연구팀의 이번 논문은 국제학술지 ‘빛: 과학과 응용(Light: Science & Applications)’ [IF=20.257] 2월 15일 字에 게재됐다. (논문명: Massively parallel electro-optic sampling of space-encoded optical pulses for ultrafast multi-dimensional imaging) 최근 마이크로 및 나노 소자들의 복잡도와 기능성이 급격하
2023-03-02우리 대학 바이오및뇌공학과 최정균 교수와 의과학대학원 박종은 교수 공동연구팀이 인공지능과 빅데이터 분석을 기반으로 스마트 면역세포를 통한 암 치료의 핵심 기술을 개발했다고 밝혔다. 이 기술은 키메라 항원 수용체(Chimeric antigen receptor, CAR)가 논리회로를 통해 작동하게 함으로써 정확하게 암세포만 공략할 수 있도록 하는 차세대 면역항암 치료법으로 기대가 모아진다. 이번 연구는 분당차병원 안희정 교수와 가톨릭의대 이혜옥 교수가 공동연구로 참여했다. 최정균 교수 연구팀은 수백만개의 세포에 대한 유전자 발현 데이터베이스를 구축하고 이를 이용해 종양세포와 정상세포 간의 유전자 발현 양상 차이를 논리회로 기반으로 찾아낼 수 있는 딥러닝 알고리즘을 개발하고 검증하는 데 성공했다. 이 방법론으로 찾아진 논리회로를 장착한 CAR 면역세포는 마치 컴퓨터처럼 암과 정상 세포를 구별하여 작동함으로써 부작용없이 암세포만 정확하게 공략하는 것이 가능하다. 바이오및뇌공학과
2023-03-02국제고체회로학회(International Solid-State Circuits Conference, 이하 ISSCC)는 세계 반도체올림픽이라고 불리며 70주년 기념식을 올해 2월 20일 미국 샌프란시스코 메리어트 호텔에서 개최했다. 우리 대학 전기및전자공학부 유회준 교수가 63편의 논문을 발표한 실적으로 동양인으로서 유일하게 톱5에 들어 최다 논문 발표자로 선정되었다고 1일 밝혔다. 유 교수는 ISSCC의 설립 41년이 지난 1995년에 현대전자(現 SK하이닉스)에서 세계 최초로 256M SDRAM을 개발한 뒤 이를 동 학회에서 한국 최초 논문을 발표한 바 있다. 이후 유 교수 연구팀은 KAIST로 옮겨 2000년부터 2023년까지 62편의 논문을 발표하여 동 학회에서 총 63편의 논문을 발표했다. 1996년에 유 교수가 집필한 `DRAM의 설계'라는 책은 삼성전자나 하이닉스 기술자들의 필독서로 활용됐다. 또한, 동 학회에서 DRAM 관련 반도체에 대해 5편, 바이오메
2023-03-02