< (왼쪽부터) 기계공학과 이강택 교수, 포스텍 한정우 교수, 한국세라믹기술원 신태호 박사 >
우리 대학 기계공학과 이강택 교수 연구팀이 포스텍 한정우 교수, 한국세라믹기술원 신태호 박사팀과의 공동 연구를 통해 양방향 고체산화물 연료전지(SOFC)용 고성능 전극 소재 개발에 성공했다고 21일 밝혔다.
양방향 고체산화물 연료전지는 고온에서 수소와 산소를 자발 반응시켜 고효율로 전력으로 변환(연료전지 모드) 하고, 전기를 가하면 청정 수소(그린 수소)와 같은 친환경 에너지원을 생산(전해전지 모드) 할 수 있는, 탄소중립 사회를 위한 차세대 에너지 변환 기술이다.
이러한 양방향 연료전지의 전기화학적 성능을 높이기 위해서 가역반응에서 전극의 촉매 성능을 획기적으로 높이는 것이 중요하며, 이를 위한 다양한 연구가 진행되고 있다. 그중 다공성 연료극 구조체 표면에 고성능 나노 금속 촉매를 입히는 기존 함침법의 경우 반응점을 늘리기 위해서 반복적인 증착 공정을 수행해야 하고, 고온 장기 구동 시 응집 현상으로 인한 촉매 활성도가 저하되는 한계를 갖고 있다.
연구팀은 이러한 문제점 해결을 위해 연료전지가 작동하는 환경에서, 전극 표면에 금속합금 나노촉매가 자발적으로 형성되는 용출(exsolution) 현상을 활용한 전극을 디자인 했다. 연구팀은 금속합금 나노촉매 형성을 촉진하기 위해 기존 코발타이트계 산화물 구조 내에 팔라듐(Pd)을 미량 첨가해, 양방향 구동 시 가역적으로 고활성을 갖는 전극 개발에 성공했다. 해당 방법으로 설계된 나노 합금 촉매는 페로브스카이트 격자 내부에서부터 전극 표면으로 스스로 용출돼 형성되기 때문에 전극 표면과 응집 현상 없이 강하게 결합하고, 입자의 균일도 또한 우수해 촉매 성능 향상에 큰 이점이 있다.
< 그림 1. Pd 이 도핑된 연료극이 적용된 양방향 고체산화물 연료전지의 구동 모식도 및 고온/수소 분위기에서의 전극 표면 용출 현상에 의한 나노 합금 촉매 형성 메커니즘 >
연구팀은 전해질 지지체 단전지에 개발된 전극을 연료극으로 사용해 성능을 측정한 결과, 연료전지 모드에서 최대출력 2.0W/cm2 (850oC), 전해전지 모드에서 전력밀도 2.23A/cm-2 (1.3V, 850oC)를 구현해, 세계 최고 수준의 양방향 연료전지 성능을 달성했다. 이는 기존 기술 대비 연료전지 모드는 1.6배, 전해전지 모드는 2.4배 향상된 결과다.
기계공학과 김경준 박사, 배경택 박사과정생, 포스텍 임채성 박사과정생이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지인 `어플라이드 카탈리시스 비: 인바이러멘탈, Applied Catalysis B: Environmental' (IF:19.503, JCR분야 0.93%) 5월 14일 字 온라인판에 게재됐다. (논문명: Concurrent promotion of phase transition and bimetallic nanocatalyst exsolution in perovskite oxides driven by Pd doping to achieve highly active bifunctional fuel electrodes for reversible solid oxide electrochemical cells)
< 그림 2. LSCFP 연료극이 적용된 가역적 고체산화물 연료전지 셀의 온도별 (700 ℃~ 850 ℃) (a) 연료전지 성능 (b) 수전해 전지 성능 (c) 가역 구동에 따른 안정성 평가 (d) 산화/환원 분위기에 따른 금속 합금 나노 촉매 형성 >
이강택 교수는 “이번 연구를 통해서 특정 페로브스카이트 전극 물질 내 높은 환원 특성을 가지는 원소의 도핑이 산화물 전극 표면에 이종 금속 나노촉매를 선택적으로 형성하는 방아쇠 역할을 할 수 있으며, 이는 고성능 고 안정성의 양방향 고체산화물 연료전지 상용화를 선도하는 기술이 될 것”이라고 말했다.
한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업, 중견연구자지원사업 그리고 나노 및 소재 기술개발사업의 지원으로 수행됐다.
그린수소는 풍력, 태양광등 재생에너지를 이용하여 생산과정에서 이산화탄소 배출이 전혀 없는 궁극적인 청정 에너지원으로 각광을 받고 있다. 이러한 그린수소를 활용/생산하는 연료전지, 수전해 전지, 촉매 분야에 산소 이온성 고체전해질이 널리 사용되고 있다. 이러한 산소 이온 전도체들은 주로 700oC 이상의 고온에서 활용되는데 이 때문에 소자 내의 다른 요소들과의 바람직하지 않은 화학반응, 소재 응집, 열충격이 발생하거나 높은 유지비용이 요구되는 등의 문제가 발생하고 있다. 우리 대학 기계공학과 이강택 교수 연구팀이 미국 메릴랜드 대학 에릭 왁스만(Eric Wachsman) 교수 연구팀과 공동연구를 통해 기존 소재 대비 전도성이 140배 높은 산소 이온 전도성 고체전해질 개발에 성공했다고 22일 밝혔다. 개발된 신소재는 비스무트 산화물 기반으로 400oC에서 기존 지르코니아 소재의 700oC에 해당하는 높은 전도성을 보이며 중저온(600oC) 영역대에서 140배 이상 높은 이
2023-11-22연료전지는 부산물로 물 만을 배출하는 친환경적인 에너지 변환 장치로, 다양한 연료전지 중 양성자 교환막 연료전지(PEMFC)는 수송용 및 발전용 연료전지로 현재 상용화가 진행 중이다. 다만 연료전지의 촉매로 사용되는 백금 촉매는 자원의 희소성으로 인한 높은 가격 때문에 대량 생산 및 전 세계적인 보급에 문제점을 갖고 있었다. 우리 대학 생명화학공학과 이진우 교수 연구팀이 국민대학교 장세근 교수 연구팀, 서강대학교 백서인 교수 연구팀과 공동연구를 통해 비백금계 촉매 기반 고 전력밀도의 양성자 교환막 연료전지를 개발했다고 7일 밝혔다. 상대적으로 다른 비 백금계 촉매들에 비해 좋은 성능을 가진다고 알려져 백금을 대체하고 기존 연료전지 비용을 줄이기 위한 가장 유력한 후보 물질로 주목받아 온 M-N-C계 촉매는 PEMFC 연료전지에서 높은 전력밀도를 구현하는 데는 많은 한계가 있었다. 이진우 연구팀은 기존 백금 촉매를 대체할 수 있는 비 백금계 Fe-N-C 촉매의 높은 성능
2023-11-07디스플레이 패널에 쓰이는 차세대 발광소재로 양자점(Quantum dot)이 각광을 받고 있다. 특히, 카드뮴이나 납과 같은 유독성 물질을 포함하지 않는 친환경 인듐 포스파이드(InP) 양자점이 주목을 받고 있으나 현재 기술로는 초고해상도 구현이 어려워 양자점 LED(QLED) 디스플레이 및 안경형 증강현실/가상현실 기기 적용에 있어 한계를 지닌다. 우리 대학 신소재공학과 조힘찬 교수 연구팀이 친환경 InP 양자점의 우수한 광학적 특성을 유지하며 초고해상도 패턴을 제작하는 신기술을 개발했다고 26일 밝혔다. 현재, 국제 유해물질 제한지침 (RoHS, Restriction of Hazardous Substances) 규정을 만족하지 못하는 제품은 많은 나라에서 판매가 금지되므로, 최근 많은 디스플레이 기업은 환경친화적인 특성을 갖춘 InP 양자점을 디스플레이에서의 빛 방출 소재로 채택하여 TV 등 중대형 디스플레이에 적용하기 시작하였다. 그러나 InP 양자점은 외부 환경에
2023-09-26미래 에너지원으로 주목받고 있는 수소 연료전지를 기존 귀금속 백금 소재 대비 1,000배 이상 저렴한 소재로 개발하여 화제다. 우리 대학 신소재공학과 조은애 교수 연구팀이 POSTECH 화학공학과 한정우 교수 연구팀과 공동연구를 통해 백금을 대체할 수 있는 비귀금속 촉매를 개발하고, 해당 소재의 고활성 메커니즘을 규명하는 데 성공했다고 22일 밝혔다. 수소차에 사용되는 양이온 교환막 연료전지(proton exchange membrane fuel cell, PEMFC)는 전극 촉매로 많은 양의 백금 촉매를 사용한다. 특히, 연료전지 공기극에서의 전기화학 반응은 속도가 매우 느려, 이를 높이기 위해 전극에 많은 양의 백금 촉매가 필요하다. 공동연구팀은 백금을 대체할 수 있는 공기극용 ‘단일 원자 철-질소-탄소-인 소재’를 개발하고, 활성 메커니즘을 규명했다고 밝혔다. 이 촉매는 상용제품에 적용되고 있는 양이온 교환막 연료전지(PEMFC) 뿐만 아니라
2023-08-23연료전지란 청정에너지원인 수소를 이용해 고효율로 전력을 생산하는 장치로, 다가오는 수소 사회에서 중요한 역할을 하는 기술로 여겨진다. 차세대 연료전지에 모두 적용 가능하고 기존에 비해 700시간 구동에도 끄떡없는 우수한 전극 소재가 개발되어 화제다. 우리 대학 신소재공학과 정우철, 기계공학과 이강택 교수와 홍익대학교 김준혁 교수 공동 연구팀이 산소 이온 및 프로톤 전도성 고체산화물 연료전지에 모두 적용 가능한 전극 소재 개발에 성공했다고 9일 밝혔다. 세라믹 연료전지는 전해질로 이동하는 이온의 종류에 따라 산소 이온 전도성 고체산화물 연료전지(SOFC)와 프로토닉 세라믹 연료전지(PCFC) 2가지로 나뉜다. 또한, 두 형태에 대해 모두 전력과 수소 간의 변환이 가능하므로 총 네 가지 소자로 구분될 수 있다. 해당 소자들은 수소전기차, 수소 충전소, 발전 시스템 등에 활용할 수 있는 탄소중립 사회를 위한 차세대 핵심 기술로 떠오르고 있다. 하지만, 이러한 소자들은 구동 온
2023-08-09