
< (왼쪽부터) 화학과 김우연 교수, 문석현 박사과정, 정원호 박사과정, 양수정 박사과정 >
우리 대학 연구진이 물리화학적 아이디어를 인공지능 딥러닝에 접목해 기존의 방법보다 일반화 성능이 높은 단백질-리간드 상호작용 예측 모델을 개발했다. 리간드란 수용체와 같은 큰 생체 분자에 특이적으로 결합하는 물질을 말하며, 생체 내의 중요한 요소이자 의약품의 개발 등에 큰 역할을 한다.
화학과 김우연 교수 연구팀이 교원창업 인공지능 신약 개발 스타트업 HITS 연구진과 함께 물리 기반 삼차원 그래프 심층 신경망을 이용해 일반화 성능을 높인 단백질-리간드 상호작용 예측 모델을 개발했다고 17일 밝혔다.
약물 후보 분자를 발굴하기 위해서 타깃 단백질과 강하게 결합하는 리간드를 찾는 것이 중요하다. 하지만 유효 물질을 찾기 위해 수백만에서 수천만 개의 무작위 리간드 라이브러리를 대상으로 실험 전수 조사를 수행하는 것은 천문학적인 시간과 비용이 필요하다. 이러한 시간과 비용을 절감하기 위해 최근 단백질-리간드 상호작용 예측에 기반한 가상탐색(virtual screening) 기술이 주목받고 있다.
기존의 상호작용 예측 인공지능 모델들은 학습에 사용한 구조에 대해서는 높은 예측 성능을 보여주지만, 새로운 단백질 구조에 대해서는 낮은 성능을 보이는 과적합(over-fitting)이 문제가 됐다. 과적합 문제는 일반적으로 모델의 복잡도에 비해 데이터가 적을 때 발생한다. 이번 연구는 이러한 과적합 문제를 해결함으로써 다양한 단백질에 대해 고른 성능을 보여주는 예측 모델을 개발하는데 주안점을 뒀다.
연구진은 물리화학적 아이디어들을 딥러닝 모델에 적용해 모델의 복잡도를 줄임과 동시에 물리 시뮬레이션을 통해 부족한 데이터를 보강함으로써 과적합 문제를 해결하고자 하였다. 단백질 원자와 리간드 원자 사이의 거리에 따른 반데르발스 힘, 수소 결합력 등을 물리화학적 방정식으로 모델링하고, 매개변수를 딥러닝으로 예측함으로써 물리 법칙을 만족하는 예측을 가능하게 했다.

< 그림 1. 단백질-리간드 간 상호작용 예측 모델의 개요도 >
또한, 학습에 사용한 단백질-리간드 결정 구조가 실험적으로 판명된 가장 안정한 구조임에 착안했다. 부족한 실험 데이터를 보강하기 위해 불안정한 단백질-리간드 구조로 이루어진 수십만 개의 인공 데이터를 생성해 학습에 활용했고, 그 결과 생성된 구조에 비해 실제 구조를 안정하게 예측하도록 모델을 학습할 수 있었다.
연구진은 개발된 모델의 성능을 검증하기 위해 대조군으로 `CASF-2016 벤치마크'를 활용했다. 이 벤치마크는 다양한 단백질-리간드 구조들 사이에서 실험적으로 판명된 결정 구조에 근접한 구조를 찾는 도킹과 상대적으로 결합력이 큰 단백질-리간드 쌍을 찾는 스크리닝 등 실제 약물을 개발하는 과정에 필수적인 과제를 포함하고 있다. 검증 테스트 결과 기존에 보고된 기술에 비해 높은 도킹 및 스크리닝 성공률을 보여줬으며, 특히 스크리닝 성능은 기존에 보고된 최고 성능 대비 약 두 배 높은 수치를 보였다.
연구진이 개발한 물리 기반 딥러닝 방법론의 또 다른 장점은 예측의 결과를 물리적으로 해석 가능하다는 것이다. 이는 딥러닝으로 최적화된 물리화학 식을 통해 최종 상호작용 값을 예측하기 때문이다. 리간드 분자 내 원자별 상호작용 에너지의 기여도를 분석함으로써 어떤 작용기가 단백질-리간드 결합에 있어서 중요한 역할을 했는지 파악할 수 있으며, 이와 같은 정보는 추후 약물 설계를 통해 성능을 높이는 데 직접 활용할 수 있다.
공동 제1 저자로 참여한 화학과 문석현, 정원호, 양수정(현재 MIT 박사과정) 박사과정 학생들은 "데이터가 적은 화학 및 바이오 분야에서 일반화 문제는 항상 중요한 문제로 강조돼왔다ˮ며 "이번 연구에서 사용한 물리 기반 딥러닝 방법론은 단백질-리간드 간 상호작용 예측 뿐 아니라 다양한 물리 문제에 적용될 수 있을 것ˮ이라고 말했다.
한국연구재단의 지원을 받아 수행된 이번 연구는 국제 학술지 `Chemical Science(IF=9.825)' 2022년 4월 13호에 표지 논문 및 `금주의 논문(Pick of the Week)'으로 선정됐다. (논문명 : PIGNet: a physics-informed deep learning model toward generalized drug–target interaction predictions, 논문 링크 : https://doi.org/10.1039/D1SC06946B)

< 그림 2. 케미컬 사이언스 2022년 4월 13호의 표지 그림 >
신약이 효과를 내려면 약물이 몸속 단백질의 특정 부위에 정확히 결합해야 한다. 우리 대학 연구진이 단백질을 이루는 기본 단위인 펩타이드 분자의 접힘 구조를 원자 수준에서 정밀하게 제어할 수 있는 기술을 개발했다. 이번 연구로 원자 하나의 변환이 분자의 형태를 바꾸는 ‘설계 스위치’처럼 작용한다는 사실이 밝혀지면서, AI 기반 맞춤형 신약 설계의 핵심 플랫폼 기술로 주목받고 있다. 우리 대학은 이노코어 AI-CRED 혁신신약 연구단(단장 이희승 석좌교수)이 출범 후 첫 연구성과로, 단백질 분자 구조인 펩타이드의 아주 작은 변화인 ‘티오아마이드(thioamide) 변환’을 통해 분자의 접힘 방식을 정밀하게 조절할 수 있는 새로운 원리를 규명했다고 16일 밝혔다. *티오아마이드 변환(thioamide substitution): 펩타이드는 원래 C(=O)–NH(탄소–산소–질소로 이루어진 결합)인데 여기서 산소
2025-11-16KAIST 연구진이 구글 딥마인드의 ‘알파폴드3(AlphaFold3)’를 뛰어넘는 차세대 바이오 AI 모델 ‘K-Fold’ 개발에 나섰다. 이번 연구를 통해 KAIST는 빠르고 정확한 신약 개발, 낮은 실패율, 그리고 AI 기반 과학 혁신을 실현하며, ‘AI가 과학을 돕는 시대’를 넘어 ‘AI가 과학을 이끄는 시대’를 여는 주역으로 떠오를 전망이다. KAIST(총장 이광형)는 과학기술정보통신부가 주관하는‘AI 특화 파운데이션 모델 개발 사업’의 주관기관으로 선정되어, 의과학·바이오 분야 AI 파운데이션 모델 개발에 본격 착수했다고 7일 밝혔다. KAIST는 이번 사업을 통해 국내 최고 수준의 인공지능(AI) 연구 역량을 바이오 분야에서도 입증하고, 신약 개발 등 첨단 바이오 AI 연구에 활용할 수 있는 차세대 파운데이션 모델 ‘K-Fold&rs
2025-11-07어둠 속에서도 사물을 인식하는 ‘전자 눈’ 기술이 한층 더 진화했다. 자율주행차의 라이다(LiDAR), 스마트폰의 3D 안면 인식, 헬스케어 웨어러블 기기 등에서 사람의 눈을 대신해 ‘보는 기능’을 수행하는 적외선 센서가 핵심 부품으로 꼽히는 가운데, KAIST·공동연구진이 원하는 형태와 크기로 초소형 적외선 센서를 제작할 수 있는 상온 3차원(3D) 프린팅 기술을 세계 최초로 개발했다. 우리 대학은 기계공학과 김지태 교수 연구팀이 고려대학교 오승주 교수, 홍콩대학교 티안슈 자오(Tianshuo ZHAO) 교수와 공동으로 상온에서 원하는 형태와 크기의 10 마이크로미터(µm) 이하 초소형 적외선 센서를 제작할 수 있는 3D 프린팅 기술을 개발했다고 3일 밝혔다. 적외선 센서는 눈에 보이지 않는 적외선 신호를 전기 신호로 변환하는 핵심 부품으로, 로봇비전 등 다양한 분야의 미래형 전자기술을 구현하는 데 필수적이다
2025-11-03전 NBC 뉴스 기자 찰스 서빈(Charles Sabine)과 미국의 전설적 포크 가수 우디 거스리(Woody Guthrie)의 공통점은 희귀 유전성 질환인 헌팅턴병을 앓았다는 점이다. 헌팅턴병은 근육 조정 능력 상실, 인지 기능 저하, 정신적 문제를 동반하는 대표적인 신경계 퇴행성 질환이다. 국내외 연구진은 이 병의 원인 단백질인 헌팅틴 단백질이 변형될 뿐 아니라, 세포 골격을 유지하는 중요한 기능을 수행한다는 사실을 새롭게 규명했다. 이번 발견은 헌팅턴병의 발병 원인 이해를 넓히고, 세포 골격 이상이 관여하는 알츠하이머병, 파킨슨병, 근위축증 등 다른 퇴행성 질환 연구에도 기여할 것으로 기대된다. 우리 대학은 생명과학과 송지준 교수 연구팀이 오스트리아 과학기술원(ISTA), 프랑스 소르본느대/파리 뇌연구원(Paris Brain Institute), 스위스 연방공대(EPFL) 등과 국제 공동연구를 통해, 초저온 전자현미경(cryo-EM)과 세포생물학적 기법을 통해 헌팅틴 단백
2025-10-01전 세계 치매 환자는 약 5,000만 명으로 추산되며, 이 중 약 70% 이상을 차지하는 알츠하이머병은 대표적인 신경 퇴행성 뇌질환이다. 한국 연구진이 알츠하이머병의 두 핵심 병리 단백질인 타우와 아밀로이드 베타가 실제로 직접 소통하며 독성을 조절한다는 사실을 세계 최초로 분자 수준에서 규명했다. 이번 성과는 알츠하이머병의 병태생리를 새롭게 바라보게 하는 한편, 질환 조기 진단을 위한 바이오마커 발굴과 신경퇴행성 뇌질환 치료제 개발에 중요한 단서를 제공할 것으로 기대된다. 우리 대학 화학과 임미희 교수(금속신경단백질연구단 단장) 연구팀이 국가과학기술연구회(NST, 이사장 김영식) 산하 한국기초과학지원연구원(KBSI, 원장 양성광) 첨단바이오의약연구부 이영호 박사 연구팀과 공동연구, 한국과학기술연구원(KIST, 원장 오상록) 뇌과학연구소 김윤경 박사, 임성수 박사 연구 참여로, 알츠하이머병의 주요 병리 단백질 중 하나인 타우의 미세소관 결합 영역(microtubule-bindin
2025-08-25