우리 대학 기계공학과 오일원, 유승화 교수 공동 연구팀이 그래핀이 코팅된 미세 금속 그물망을 이용해 물의 움직임과 흐름을 전기로 자유롭게 제어하는 기술을 개발했다.
연구팀은 그래핀이 코팅된 마이크로미터(100만분의 1미터) 단위 틈의 금속 그물망에 갇힌 물을 전기장을 가해 투과시키거나, 표면에 놓인 물방울의 모양을 바꾸는 등 ‘전기습윤현상(전기장이 젖음성을 바꾸는 현상)’을 이용해 물의 움직임과 흐름을 전기로 제어하는 방식의 기술을 개발해 수(水)처리 장치에서의 다양한 활용 가능성을 제시했다.
이번 연구결과는 네이처 자매지 네이처 커뮤니케이션즈 10월 31일자에 게재됐다.(논문명 : Graphene-coated meshes for electro-active flow control devices utilizing two antagonistic functions of repellency and permeability)
표면청소, 방수표면, 제습공조, 부식방지, 저항감소 등 다양한 수처리에 적용 가능한 액체 거동 제어 장치의 개발이 요구되고 있다. 그러나 기존의 표면 젖음성 조절과 부식 방지 연구들은 표면의 굴곡이나 화학적인 코팅에 의존하였기 때문에 표면의 젖음성을 제어할 수 없었다.
전기습윤현상을 이용하면 액체의 움직임과 흐름을 조작할 수 있게 돼 발수성 소재의 표면을 젖게 하거나 흡수성 소재의 표면에 물이 스며들지 않게 제어가 가능하다.
연구팀은 그래핀이 코팅된 금속재질의 그물망을 전극으로 사용하여 전기습윤현상에 기반한 액체거동기술을 개발했다. 순수한 물 혹은 이온성 액체 방울을 그래핀 그물망 전극의 표면에 위치시키고 구리판을 또 다른 전극으로 사용해 전압을 인가 시 액체방울 모양이 가역적으로 변화함을 보였다.
이는 정전기력 (electrostatic force)이 물 분자의 정렬 혹은 이온의 이동을 유도하여 액체방울이 전기장 방향으로 늘어나 생긴 현상이다.
그래핀의 소수성(hydrophobicity)으로 인해 일반적으로는 그래핀이 코팅된 그물망에는 물이 투과되지 못한다. 하지만 전기장을 가할 때 물에 작용하는 정전기힘과 그물망 틈 사이에 작용하는 모세관힘의 상호작용에 기반한 젖음성 조절 메커니즘을 규명해 이를 바탕으로 그물망 바깥쪽에 높은 전기장을 인가하면 안쪽의 액체가 비가역적으로 그물망을 투과하여 이동함을 보여, 전기로 그물망의 발수성과 투수성을 능동적으로 제어가 가능함을 보였다.
이를 이용해 그래핀 그물망으로 가둔 물탱크의 물을 전기를 가해 내보내는 장치나 물방울을 층층이 위치한 그래핀 그물망들의 가장 위에서 아래로 전기를 이용해 이동시키는 장치 등을 개발했다. 실험결과 그래핀 코팅이 금속의 부식을 막아 수처리 환경에서도 장시간 사용이 가능했다.
이 연구는 그래핀이 코팅된 금속재질의 그물망을 전극으로 사용하여 액체의 모양과 흐름을 능동적으로 제어할 수 있는 기술을 개발한 것이다.
전기장을 가하여 자유롭게 젖음성을 조절할 수 있는 내부식성* 그물소재로 필요에 따라 물의 흐름을 막거나 통과시키는 제어장치를 제작하여 다양한 미세유체 장치, 방습 및 제습 장치, 차세대 수(水) 처리장치, 혹은 물에 대한 마찰저항 조절이 필요한 선박과 플랜트 등에 사용할 수 있다. 이들 분야에서 요구되는 액체의 정확한 거동제어와 소형화, 장시간 사용 등의 기능을 갖춘 소재/소자의 원천 기술로의 적용이 기대된다.
오일권 교수는 “이 연구는 기존 연구에서 나타났던 금속의 부식 현상 및 물이 젖는 정도를 조절할 수 없었던 문제를 그래핀이 코팅된 그물망 구조로 극복하면서 마이크로 수준에서 액체의 움직임과 젖음성을 제어할 수 있는 방법을 개발한 것이다. 방습 및 제습, 미세유체, 해수 담수화, 차세대 수(水) 처리 장치 등 다양한 분야에 적용될 수 있을 것이다.”고 말했다.
□ 그림 설명
그림1. 그래핀 매쉬의 제조 방법 및 기능성 길항 액체 제어 기술의 도식도
그림2. 비가역적 액츄에이션 모드(irreversible actuation mode)와 기능성 길항 액체 제어장치(functionally antagonistic active flow devices)
퇴행성 질환을 유발하는 아밀로이드 섬유 단백질의 초기 불안정한 움직임과 같은 생명 현상을 분자 수준에서 실시간 관찰이 가능한 기술이 개발되었다. 이를 통해 알츠하이머나 파킨슨 병과 같은 퇴행성 질환의 발병 과정에 대한 실마리를 제공할 수 있을 것으로 기대된다. 우리 대학 신소재공학과 육종민 교수 연구팀이 한국기초과학지원연구원, 포항산업과학연구원, 성균관대학교 약학대학 연구팀과 함께 그래핀을 이용해 알츠하이머 질병을 유발한다고 알려진 아밀로이드 섬유 단백질의 실시간 거동을 관찰할 수 있는 새로운 단분자 관찰 기술(single-molecule technique)을 개발했다고 30일 밝혔다. 단분자 관찰 기술은 단일 분자 수준에서 발생하는 현상을 관찰할 수 있는 기법을 말한다. 생체 과정에서 수반되는 단백질 간의 상호작용, 접힘, 조립 과정 등을 이해하는 데 핵심적인 기술이다. 현재까지 단분자 관찰 기술로는 특정 분자를 식별하기 위한 형광 현미경을 이용해 관찰하거나, 단백질을
2024-01-30우리 대학이 8일부터 이틀간 국회의원회관에서 ‘2023 혁신창업국가 대한민국 국제심포지엄’을 개최한다. 딥테크 창업기업들은 첨단과학기술을 기반으로 혁신적인 제품과 서비스를 개발하고 경제 성장과 일자리 창출에 핵심적인 역할을 맡고 있다. 또한, 고도의 기술력과 창의력으로 대한민국의 경제 생태계를 혁신적으로 변화시키는 원동력이 되기도 한다. 그러나 기술개발, 인력 확보, 규제, 시장 진입 및 경쟁, 자금 부족 등이 혁신창업기업이 겪는 제약은 여전히 산적해 있다. 이번 행사는 국제심포지엄과 함께 혁신창업기업을 선정해 시상하고 창업기업 체험 부스, 기업 소개, 창업 경진대회 등을 마련해 국내·외 혁신 창업의중요성에 대한 공감대를 형성하고 이를 활성화하는 방안을 모색하고자 마련됐다. 첫날 열리는 국제심포지엄에서는 기업주도형 벤처 캐피털인 어플라이드 벤처스(Applied Ventures)의 아난드 카만나바르(Anand Kamannavar) 글로벌 투
2023-11-08우리 대학 신소재공학과 김상욱 교수가 지난 7월 13일 부산에게 개최된 제10회 한국그래핀학회 정기총회에서 한국그래핀학회의 7대 회장으로 선출되었다. 한국그래핀학회는 2008년 우리 대학 전기전자공학과 조병진 교수가 주도한 그래핀학술연구회 모임으로 출발하여 2019년 한국그래핀학회로 재도약하였으며, 우리나라 그래핀 연구와 학문적 교류를 촉진하는 데 중추적인 역할을 수행하고 있다. 김상욱는 2024년 1월부터 2년간 학회 회장직을 맡게 된다. 지난 10여년간 한국그래핀학회는 우리나라가 전세계적으로 연구를 선도하고 있는 대표적인 연구분야인 그래핀과 2차원소재에 대한 다양한 국내외 학술행사의 추진을 통해 연구활동의 증진과 함께 국제적 학술교류를 촉진하여 왔으며, 앞으로 본격적으로 그래핀을 산업적으로 유용한 신소재로 발전시키기 위한 연구개발 측면에서도 우리나라가 전 세계를 선도하는데 중추적인 역할을 수행하고자 한다. 김상욱 차기회장은 “그래핀과 2차원 신소재들이 IT, 에
2023-07-17기후변화 대응을 위한 친환경 공정 기술 개발의 필요성이 확대됨에 따라 화학 및 제약 산업에서의 저에너지 분리 공정은 지속가능한 개발에 있어 중추적 역할을 담당하고 있다. 특히, 제약 산업의 경우 고품질의 의약품 제조를 위해 고순도의 유기용매 사용이 필수적이며, 이에 따라 유기용매의 고효율 분리 공정에 대한 요구가 꾸준히 증가하고 있는 실정이다. 우리 대학 생명화학공학과 최민기 교수 연구팀이 2차원 다공성 탄소 기반의 유기용매 정제용 초고성능 나노여과막을 개발했다고 3일 밝혔다. 기존의 유기용매 분리 공정은 혼합물을 이루는 물질 간의 끓는점 차이를 이용하여 분리하는 증류법이 사용되어 대용량의 혼합물을 끓여야 하는 만큼 막대한 에너지가 소모되는 단점이 있었다. 반면, 분리막 기술은 단순히 압력을 가하는 것만으로 유기용매의 선택적 투과가 가능하고 유기용매보다 크기가 큰 입자들을 효과적으로 제거할 수 있다. 특히, 열이 가해지지 않으므로 공정에서 요구되는 에너지 및 비용을 절
2023-04-03우리 대학 신소재공학과 김상욱 교수 연구팀이 부산대 안석균 교수 연구팀과 공동 연구를 통해 그래핀-액정 복합섬유를 이용한 새로운 인공 근육을 개발하는 데 성공했다고 5일 밝혔다. 이 인공 근육은 현재까지 과학계에 보고된 것 중에서 인간 근육과 가장 유사하면서도 최대 17배 강한 힘을 보이는 것으로 밝혀졌다. 동물의 근육은 신경 자극에 의해 그 형태가 변하면서 기계적인 운동을 일으키는 것으로 알려져 있다. 로봇이나 인공장기 등 다양한 분야에서 동물근육과 유사한 운동을 일으키기 위한 기술들이 개발돼왔으나, 지금까지는 주로 기계장치에 의존한 것들이 대부분이다. 최근에는 유연성을 가지는 신소재를 이용해 생명체의 근육같이 유연하면서도 기계적 운동을 일으킬 수 있는 인공 근육들이 연구되고 있다. 그러나 이들 대부분이 일으키는 운동의 범위가 동물 근육보다 제한되고 강한 운동을 일으키기 위해서는 마치 시계태엽을 감듯이 부가적인 에너지 저장과정을 거쳐야만 하는 문제점이 있다. 김교수
2022-12-05