< (왼쪽부터) 신소재공학과 김경민 교수, 정운형 박사과정, 전재범 박사과정 >
우리 대학 신소재공학과 김경민 교수 연구팀이 두뇌에서 일어나는 신경 조율 활동을 구현한 인공지능용 하드웨어와 관련 알고리즘의 개발에 성공했다고 19일 밝혔다.
4차 산업 혁명 시대를 맞아 인공지능 기술(Artificial Intelligence; AI)의 연구가 활발해지고 이에 따라 인공지능 기반 전자기기들의 개발 및 제품 출시가 가속화되고 있다. 인공지능을 전자기기에서 구현하기 위해서 맞춤형 하드웨어의 개발 또한 뒷받침돼야 하는데, 현재 대부분의 인공 지능용 전자기기들은 많은 연산량을 수행하기 위해 높은 전력 소모와 고도로 집적된 메모리 배열을 사용하고 있다.
인공 지능의 능력 향상을 위해 이러한 전력 소모 및 집적화 한계의 문제를 해결하는 것은 인공 지능 기술 분야의 커다란 과제이며, 인간의 뇌 활동에서 문제 해결의 단서를 찾고자 하는 노력이 계속돼왔다.
김경민 교수 연구팀은 인간의 두뇌 신경망이 신경 조율(Neuromodulation) 기능을 통해 연결 구조를 상황에 따라 지속적으로 변화시키는 것을 모방, 인공 지능을 위한 수학적 연산을 효율적으로 처리할 수 있는 기술을 개발했다. 두뇌에서는 학습하는 과정에서 실시간으로 신경망의 연결도를 변경해 필요에 따라 기억을 저장하거나 불러내는데, 이러한 신경 조율 기능을 하드웨어에서 직접 구현하는 새로운 방식의 인공 지능 학습 방식을 제시한 것이다.
연구팀은 개발된 기술의 효율성을 증명하기 위해 독자적인 전자 시냅스 소자가 탑재된 인공 신경망 하드웨어를 제작했으며, 여기에 개발한 알고리즘을 적용해 실제 인공지능 학습을 진행했고, 그 결과 인공지능 학습에 필요한 에너지를 37% 절약할 수 있었다.
< 그림1. 스테이싱 알고리즘에 관한 모식도 >
< 그림2. CTM 멤리스터 데모 >
공동 제1 저자인 신소재공학과 정운형 박사과정과 전재범 박사과정은 "인간의 두뇌는 생존을 위해 에너지 소모를 최소화하는 방향으로 진화해왔다. 이번 연구에서는 간단한 회로의 구성만으로 인간 두뇌의 학습 방식을 구현하였으며, 이를 통해 40%에 가까운 에너지를 줄일 수 있었다, 이는 범용성 있게 모든 SNN(스파이킹 뉴럴 네트워크) 인공 신경망에서 사용 가능한 장점을 가진다ˮ며 "뇌 활동을 모방해 개발한 새로운 학습 방식의 착안은 앞으로 인공 지능 분야의 소프트웨어·하드웨어 분야가 나아가야 할 길의 이정표가 될 것이다ˮ라고 말했다.
이러한 두뇌 신경 활동을 모방한 학습 알고리즘은 기존 전자기기 및 상용화된 반도체 하드웨어에 적용 및 호환을 할 수 있으며 차세대 인공 지능용 반도체 칩의 설계에 사용할 수 있을 것으로 기대된다.
이번 연구는 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)'에 지난 3월 31일 자에 게재됐으며 한국연구재단, ㈜SK Hynix, 나노종합기술원(NNFC) 및 KAIST의 지원을 받아 수행됐다. (논문명: Demonstration of Neuromodulation-inspired Stashing System for Energy-efficient Learning of Spiking Neural Network using a Self-Rectifying Memristor Array)
‘노란 포도'나 `보라색 바나나'와 같이 본 적 없는 시각 개념을 이해하고 상상하는 인공지능 능력 구현이 가능해졌다. 우리 대학 전산학부 안성진 교수 연구팀이 구글 딥마인드 및 미국 럿거스 대학교와의 국제 공동 연구를 통해 시각적 지식을 체계적으로 조합해 새로운 개념을 이해하는 인공지능 새로운 모델과 프로그램을 수행하는 벤치마크를 개발했다고 30일 밝혔다. 인간은 `보라색 포도'와 `노란 바나나' 같은 개념을 학습하고, 이를 분리한 뒤 재조합해 `노란 포도'나 `보라색 바나나'와 같이 본 적 없는 개념을 상상하는 능력이 있다. 이런 능력은 체계적 일반화 혹은 조합적 일반화라고 불리며, 범용 인공지능을 구현하는 데 있어 핵심적인 요소로 여겨진다. 체계적 일반화 문제는 1988년 미국의 저명한 인지과학자 제리 포더(Jerry Fodor)와 제논 필리쉰(Zenon Pylyshyn)이 인공신경망이 이 문제를 해결할 수 없다고 주장한 이후, 35년 동안 인공지능 딥러
2023-11-30우리 대학이 28일 오후 대전 본원 정보전자공학동에서 '인공지능반도체대학원 개원식'을 열었다. 인공지능반도체대학원(책임교수 유회준)은 지난 5월 과학기술정보통신부의 인공지능반도체 분야 석·박사 고급인재 양성사업에 선정돼 설립됐다. 과기부로부터 연 30억 원, 대전광역시에서 연 9억 원을 지원 받는다. 올 가을학기부터 학사 운영을 시작해 12명의 석·박사 과정 학생이 재학 중이며, 향후 5년간 150명의 인재를 배출할 계획이다. 이날 열린 개원식에는 이광형 총장, 이장우 대전광역시장, 더불어민주당 조승래 의원(대전 유성구 갑), 강도현 과기정통부 정책실장, 전성배 정보통신기획평가원장, 방승찬 ETRI 원장과 산학 협력기업 관계자 등이 함께 참석해 현판 제막식을 진행했다. 유회준 책임교수는 "KAIST는 반도체 공정과 설계 등 전 분야에 걸쳐 세계적인 경쟁력을 갖춘 교육과 연구 여건이 완비되었다"라고 전했다.2008년부터 인공지능반도체 기술 개
2023-11-28유엔기구(UN)의 지속가능발전목표(SDGs)에 따르면 하루 2달러 이하로 생활하는 절대빈곤 인구가 7억 명에 달하지만 그 빈곤의 현황을 제대로 파악하기는 쉽지 않다. 전 세계 중 53개국은 지난 15년 동안 농업 관련 현황 조사를 하지 못했으며, 17개국은 인구 센서스(인구주택 총조사)조차 진행하지 못했다. 이러한 데이터 부족을 극복하려는 시도로, 누구나 웹에서 받아볼 수 있는 인공위성 영상을 활용해 경제 지표를 추정하는 기술이 주목받고 있다. 우리 대학 차미영-김지희 교수 연구팀이 기초과학연구원, 서강대, 홍콩과기대(HKUST), 싱가포르국립대(NUS)와 국제공동연구를 통해 주간 위성영상을 활용해 경제 상황을 분석하는 새로운 인공지능(AI) 기법을 개발했다고 21일 밝혔다. 연구팀이 주목한 것은 기존 통계자료를 기반으로 학습하는 일반적인 환경이 아닌, 기초 통계도 미비한 최빈국(最貧國)까지 모니터링할 수 있는 범용적인 모델이다. 연구팀은 유럽우주국(ESA)이 운용하며 무료로
2023-11-21의생명공학 연구에 일반적으로 사용되는 현미경 기술들은 염색이나 유전자 조작을 해야만 관찰할 수 있다는 한계가 있다. 하지만 염색이 된 세포들은 치료 목적으로 활용할 수 없어 세포나 조직을 살아있는 상태 그대로 관찰할 수 있는 홀로그래픽 현미경과 이를 체계적으로 분석할 수 있는 인공지능을 결합한 의생명공학 연구의 활용 방안 및 문제점에 대한 분석이 필요하다. 우리 대학 물리학과 박용근 교수 연구팀이 국제 학술지 `네이처 메소드(Nature Methods)'에 홀로그래픽 현미경과 인공지능 융합 연구 방법론을 조망한 견해 (perspective)를 게재했다고 14일 전했다. 연구팀은 기존 현미경 기술 대비 홀로그래픽 현미경의 이미지 복원 기술이 시간을 많이 필요하고 전처리 없이 세포나 조직을 찍을 수 있다는 장점이 있지만, 대신에 그만큼 결과물 분석에 많은 시간과 노력을 들여야 한다고도 분석했다. 박용근 교수 연구팀은 이런 문제점을 홀로그래픽 현미경과 인공지능과의 통합을 통해
2023-11-14우리 대학 전산학부 안성진 교수 연구팀이 미국 럿거스 대학교와 협력하여 트랜스포머 및 재귀신경망 기반의 월드모델을 대체할 차세대 에이전트 월드모델 기술을 세계 최초로 개발했다. 월드모델은 인간의 뇌가 현실 세계의 경험을 바탕으로 환경 모델을 구축하는 과정과 유사하다. 이러한 월드모델을 활용하는 인공지능은 특정 행동의 결과를 미리 시뮬레이션해보고 다양한 가설을 검증할 수 있어, 범용 인공지능의 핵심 구성 요소로 여겨진다. 특히, 로봇이나 자율주행 차량과 같은 인공지능 에이전트는 학습을 위해 여러 가지 행동을 시도해 보아야하는데, 이는 위험성과 고장 가능성을 높인다는 단점을 갖는다. 이에 반해, 월드모델을 갖춘 인공지능은 실세계 상호작용 없이도 상상모델 속에서 학습을 가능케 해 큰 이점을 제공한다. 그러나 월드모델은 자연어처리 등에서 큰 발전을 가능하게 한 트랜스포머와 S4와 같은 새로운 시퀀스 모델링 아키텍처의 적용에 한계가 있었다. 이로 인해, 대부분의 월드모델이 성능
2023-11-09