〈 김 일 두 교수〉
우리 대학 신소재공학과 김일두 연구팀이 리튬-공기전지의 핵심 구성요소인 촉매를 대량생산할 수 있는 기술을 개발했다.
리튬-공기전지는 전기자동차에 쓰이는 리튬-이온전지를 대체할 차세대 전지로 주목받고 있으며, 이번에 연구팀이 개발한 원천기술을 통해 리튬-공기전지의 상용화에 한 발짝 다가갈 것으로 기대된다.
연구팀은 촉매활성이 뛰어난 두 소재인 루테늄산화물(RuO2)과 망간산화물(Mn2O3)이 균일하게 분포된 이중 나노튜브 구조를 손쉽게 대량 제조하는 원천기술을 확보했고, 이를 리튬-공기전지에 적용하는데 성공했다.
이번 연구는 나노재료 분야의 국제 학술지 ‘나노 레터스(Nano Letters)’ 3일자 온라인 판에 게재됐다. (논문명: One-Dimensional RuO2/Mn2O3 Hollow Architectures as Efficient Bifunctional Catalysts for Lithium-Oxygen Batteries)
리튬-공기전지는 리튬-이온전지에 비해 용량이 10배 이상 높고 대기 중의 산소를 연료로 활용하기 때문에 전기자동차를 위한 에너지 저장장치로 큰 주목을 받고 있다.
그러나 방전 시 생성되는 고체 리튬산화물(Li2O2)이 충전 과정에서 원활히 분해되지 않아 전지의 효율 및 수명특성이 저하돼 상용화에 어려움을 겪었다. 따라서 탄소재 양극 내의 리튬산화물의 형성 및 분해를 안정적으로 도와주는 촉매 개발이 필수적으로 요구됐다.
리튬-공기전지용 촉매는 가벼우면서 내구성이 우수하고 촉매의 표면적을 최대한 넓히는 것이 중요하다. 현재 상용화 수준으로 대량생산이 가능하고 우수한 촉매 활성을 갖는 소재는 아직 개발되지 않았었다.
연구팀은 위의 문제 해결을 위해 루테늄과 망간 전구체가 녹아 있는 고분자 용액을 전기 방사했다. 이는 누에가 실을 뽑듯이 고분자 용액을 재료로 삼은 실을 뽑아내 루테늄-망간 전구체를 기반으로 한 고분자 복합 섬유를 합성해내는 기술이다.
이후 이 섬유를 고온 열처리하면 거푸집 역할을 하는 고분자 템플릿(Template)이 타서 없어지고, 루테늄산화물 및 망간산화물의 이종 물질이 함께 복합체를 이루는 이중튜브 구조의 촉매가 완성된다.
연구팀이 개발한 이중 튜브는 직경 220 나노미터의 외부튜브와 80 나노미터의 내부튜브로 이뤄져 안쪽 및 바깥쪽 벽이 동시에 촉매 반응에 참여 가능하고, 비어있는 공간이 많아 가볍다는 장점을 갖는다.
연구팀은 초기 충전, 방전 시의 과전압 차이가 약 0.8V 이내로 감소하는 효과를 얻었다. 기존 탄소재 사용시 과전압은 약 2.0V 이상이다. 또한 용량제한 1000 mAh/g 하에서 100사이클 이상의 안정적인 리튬-공기전지 특성을 확인했다.
위의 기술 향상이 가능한 이유는 리튬산화물의 생성반응(산소환원 반응)을 도와주는 망간산화물 촉매와 분해반응(산소발생 반응)을 돕는 루테늄산화물 촉매가 내, 외부 튜브에서 나노단위로 균일하게 존재하기 때문이다.
김 교수 연구팀의 핵심 기술인 전기방사 기술은 고분자, 금속 전구체가 포함된 용액을 전기적 인력으로 연신시켜 수십에서 수백 나노 직경의 나노섬유를 얻을 수 있는 기술이다.
이 기술은 쉽게 기능성 나노섬유를 대량생산할 수 있어 수처리용 필터, 황사 마스크, 마스크팩 소재, 바이오 필터 등에 활발히 사용되고 있다.
연구팀은 “휘발점이 다른 두 용매의 온도 상승 속도를 조절하는 간단한 공정을 통해 리튬-공기전지의 충전 및 방전에 이상적인 촉매구조 디자인에 성공했다”고 밝혔다.
김 교수는 “생산 공정이 매우 손쉽고 대량생산이 가능한 기술이다”며 “촉매의 성능이 우수해 차세대 전지로 각광받는 리튬-공기전지의 상용화를 앞당기는 데 기여할 것이다”고 말했다.
신소재공학과 김상욱 교수와 공동 연구로 진행된 이번 연구는 윤기로 박사과정이 제1저자로 참여했고, ‘한국 이산화탄소 포집 및 처리 연구개발센터(Korea CCS R&D Center)’ 및 현대자동차의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 루테늄산화물-망간산화물 코어-쉘 나노튜브 및 이중 나노튜브 미세구조 사진
그림2. 나노튜브 촉매가 사용된 리튬-공기전지의 구성
그림3. 리튬-공기전지의 구동 원리
그림4. 루테늄산화물-망간산화물 코어-쉘 나노튜브 및 이중 나노튜브 형성원리
우리 대학 신소재공학과 김일두 교수가 지난 11월 30일 서울 한국과학기술회관 국제회의장에서 개최된 2023 미래정보연구포럼 행사에서 2023 지식공유대상 유공 과학기술정보통신부 장관상을 수상했다. 김일두 교수는 나노과학 분야의 권위학술지인 에이씨에스 나노(ACS Nano, Impact Factor 17.1) 저널의 Executive Editor로 올해 7월 1일부로 활동하면서, KAIST의 위상을 높였을 뿐만 아니라 나노과학 분야에서 세계적인 석학들과 어깨를 나란히 하며 대한민국 과학 위상을 높이는데 기여하고 있다. 2023년도에 MIT, 노스웨스턴 대학, 칼텍, UCLA, USC, Waterloo 대학, 중국 Nankai, Tianjian University of Technology, UC San Diego 대학에서 초청강연을 진행하였으며, 지난 4월 대한화학회 ACS Publication Nano Summit, 나노발칸 유럽학회, ACS Science Talk, As
2023-12-04우리 대학은 지난 11월 15일(수), 본교 학술문화관 5층 정근모 컨퍼런스홀에서 `제4회 KAIST 국제 이머징 소재 심포지엄(4th KAIST Emerging Materials Symposium)'을 성공적으로 개최했다. `차세대 소재 개발의 빅아이디어 탐색'을 주제로 열린 이번 심포지엄에는 미국화학회가 발간하는 화학 분야 권위 학술지 Chemical Reviews(Impact Factor = 62.1)의 편집위원장(Editor-in-chief)인 샤론 해머스 쉬퍼(Sharon Hammes-Schiffer) 교수를 포함해 재료공학·화학·화학공학·응용물리학 분야의 석학 15명이 강연자로 참여했다. 이번 심포지엄은 재료공학·화학·화학공학·응용물리학 분야의 빅아이디어를 소개하고, 나노공학의 차세대 응용을 위한 최신 성과를 공유하기 위하여 기획되었다. 최신 나노소재 응용, 화학·재료공학 연
2023-11-22전기자동차에서 볼 수 있는 고용량 배터리에 사용되고 있는 실리콘 활물질은 기존 음극 활물질인 흑연 대비 높은 용량 값(4200 mAh/g)을 갖고 있으나, 충전 및 방전 간 400%에 달하는 높은 부피 팽창/수축률이 배터리 수명에 악영향을 미치고 있다. 이를 해결하기 위해서 단일벽 탄소나노튜브를 소량 첨가해 수명 특성이 향상되는 결과를 얻었는데, 이런 향상이 어떻게 가능한지 나노스케일에서 영상화한 연구 결과가 공개됐다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 LG에너지솔루션과 협업해 배터리의 수명 특성 향상 메커니즘 영상화 결과를 국제학술지‘에이씨에스 에너지 레터스(ACS Energy Letters, Impact Factor: 22)’에 게재했다고 19일 밝혔다. (논문명: Spatially Uniform Lithiation Enabled by Single-Walled Carbon Nanotubes) 연구팀은 이전에는 실리콘 활물질이 충&midd
2023-09-19우리 대학 신소재공학과 김상욱 교수가 세계 최대 신소재 분야 학회인 미국재료학회(Materials Research Society, MRS)의 2025년 봄 학회 의장 (Meeting Chair)으로 선정됐다고 밝혔다. 학회 의장단은 학회 행사가 포함하게 될 신소재 연구분야를 정의하고 학회 프로그램 및 심포지엄을 개발하는 역할을 맡는다. MRS 학회는 13,000여 명의 회원을 보유한 90개 이상의 국가에서 연구자들이 참가하는 신소재 분야 최대 규모의 학회다. 김 교수는 그간 나노소재 연구분야에서 280여 편의 SCI 학술지 논문 게재, 220여 회의 국제 학회 초청 강연을 수행했다. 특히 그래핀 산화물의 액정성을 세계 최초로 보고하고 에너지 소재, 스마트 섬유, 인공근육 및 로보틱스와 같은 새로운 분야들로 활용한 연구업적들이 세계적으로 인정받고 있다. 그간 그래핀 산화물 액정, 단일원자촉매, 블록공중합체 반도체 나노패터닝 분야에서의 세계 최초 연구 등 나노소재의 자기조립
2023-08-21디스플레이 패널에 들어가는 수많은 픽셀은 빛을 낼 수 있는 발광 소재들을 고해상도로 패터닝(patterning) 함으로써 얻어진다. 특히, 증강현실/가상현실용 근안(near-eye) 디스플레이의 경우 우수한 화질을 얻기 위해서는 기존 디스플레이 이상의 초고해상도 픽셀 패턴이 반드시 필요하다. 우리 대학 신소재공학과 조힘찬 교수 연구팀(공동저자 강정구 교수 연구팀)이 발광성 나노소재의 높은 발광 효율을 유지하며 초고해상도 패턴을 제작하는 패터닝 기술을 개발했다고 17일 밝혔다. 높은 색 순도와 발광 효율로 인해 차세대 발광체로 주목받고 있는 양자점(퀀텀닷)이나 페로브스카이트 나노결정과 같은 용액공정용 나노소재들의 경우, 고유의 우수한 광학적 특성을 유지하면서 균일한 초고해상도 패턴을 제작하는 것이 어렵기 때문에 이를 극복할 수 있는 새로운 소재 및 공정 기술을 개발하는 것이 차세대 디스플레이 구현에 있어서의 필수 요소라고 할 수 있다. 조 교수 연구팀은 양자점과 페
2023-08-17