< 신경과학 인공지능 융합연구센터장 이상완 교수 >
우리 대학 바이오및뇌공학과 이상완 교수(신경과학 인공지능 융합연구센터장) 연구팀이 뇌 기반 인공지능 기술을 이용해 인공지능의 난제 중 하나인 과적합-과소적합 상충 문제를 해결하는 원리를 풀어내는 데 성공했다고 5일 밝혔다.
이상완 교수와 김동재 박사(現 뉴욕대학교 박사후 연구원)가 주도하고 우리 대학 정재승 교수가 참여한 이번 연구는 `강화학습 중 편향-분산 상충 문제에 대한 전두엽의 해법'이라는 제목으로 국제 학술지 셀(Cell)의 오픈 액세스 저널인 `셀 리포트(Cell Reports)'에 지난해 12월 28일 字 온라인판에 게재됐다. (논문명: Prefrontal solution to the bias-variance tradeoff during reinforcement learning)
최근 인공지능 모델들은 다양한 실제 문제들에 대해 최적의 해법을 제시하지만, 상황 변화에 유동적으로 대응하는 부분에 있어서는 여전히 어려움을 겪고 있다. 기계학습에서는 이를 과소적합-과적합의 위험성 (underfitting-overfitting risk) 또는 편향-분산 상충 문제(bias-variance tradeoff)라 하며 오랫동안 연구됐지만, 실제 세계와 같이 상충 조건이 계속 변하는 상황에서의 명확한 해법은 아직 제안된 바가 없다.
반면 인간은 현재 주어진 문제에 집중하면서도(과소적합 문제 해결), 당면 문제에 과하게 집착하지 않고(과적합 문제 해결) 변하는 상황에 맞게 유동적으로 대처한다. 연구팀은 뇌 데이터, 확률과정 추론 모형, 강화학습 알고리즘을 이용해 인간의 뇌가 이 문제를 어떻게 해결하는지에 대한 이론적 틀을 마련하고 이로부터 유동적인 메타 강화학습 모델을 도출해냈다.
놀랍게도 인간의 뇌는 중뇌 도파민 회로와 전두엽에서 처리되는 `예측 오차'의 하한선(prediction error lower bound)이라는 단 한 가지 정보를 이용해 이 문제를 해결한다. 우리의 전두엽, 특히 복외측전전두피질은 현재 내가 사용하고 있는 문제 해결 방식으로 주어진 문제를 얼마나 잘 풀 수 있을지에 대한 기대치의 한계를 추정하고(예: `이렇게 풀면 90점까지는 받을 수 있어'), 변화하는 상황에 맞춰 최적인 문제 해결전략을 유동적으로 선택하는 과정 (예: `이렇게 풀면 기껏해야 70점이니 다르게 풀어보자')을 통해 과소적합-과적합의 위험을 최소화하게 된다.
이상완 교수 연구팀은 2014년 해당 전두엽 영역이 환경의 불확실성을 바탕으로 강화학습전략을 유동적으로 조절하는 데 관여한다는 사실을 처음 발견했고(`뉴런(Neuron)' 학술지에 발표), 2015년에는 인과관계 추론 과정에도 관여한다는 사실을 발견했다(`PLOS Biology' 학술지에 발표). 이어 2019년에는 해당 뇌 영역이 문제의 복잡도까지 고려할 수 있다는 사실을 발견했다(`네이처 커뮤니케이션즈(Nature Communications)' 학술지에 발표).
이러한 일련의 연구 결과들은 자신의 학습 및 추론 능력을 스스로 평가하는 인간의 메타 인지 능력을 보여주는 증거로, 이 능력을 바탕으로 인공지능이 풀기 어려워하는 현실 세계의 다양한 상충적 상황들을 풀어낼 수 있다는 `전두엽 메타 학습 이론'을 정립한 바 있다(`사이언스 로보틱스(Science Robotics)' 학술지에 발표). 이번 연구는 이 이론에 기반해 인공지능의 오랜 난제 중 하나인 과소적합-과적합 상충 문제를 실제로 풀어낸 최초의 사례로 평가된다.
< 그림 1. 인간의 유동적 문제해결 방식을 모사하는 메타 강화학습 모델 그림 >
연구를 통해 개발된 메타 강화학습 모델을 이용하면 간단한 게임을 통해 인간의 유동적 문제 해결 능력을 간접적으로 측정할 수 있다. 더 나아가 스마트 교육이나 중독과 관련된 인지 행동치료에 적용할 경우 상황 변화에 유동적으로 대처하는 인간의 문제 해결 능력 자체를 향상할 수 있을 것으로 기대된다. 차세대 인공지능, 스마트 교육, 인지 행동치료 등 다양한 분야에 파급력이 큰 원천 기술로 최근 국내 및 해외 특허 출원이 완료된 상태다.
연구를 주도한 제1 저자 김동재 박사는 "인간 지능의 특장점에 대한 이해가 얼마나 중요한지 보여주는 연구 중 하나ˮ라고 말했다. 연구 책임자인 이상완 교수는 "인공지능이 우리보다 잘 푸는 문제가 많지만, 반대로 인공지능으로 풀기 어려운 문제들이 우리에게는 정말 쉽게 느껴지는 경우들이 많다. 인간의 다양한 고위 수준 능력을 인공지능 이론 관점에서 형식화하는 연구를 통해 인간 지능의 비밀을 하나씩 풀어나갈 수 있을 것으로 기대된다ˮ라며 "이러한 뇌 기반 인공지능 연구는 인간의 지능을 공학적으로 탐구하는 과정으로 볼 수 있으며, 인간과 인공지능이 서로 도우며 함께 성장해 나갈 수 있는 명확한 기준점을 마련할 수 있을 것ˮ이라고 말했다. 이상완 교수는 뇌 기반 인공지능 연구의 독창성과 도전성을 인정받아 구글 교수 연구상과 IBM 학술상을 받은 바 있다.
연구팀은 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받아 설립한 KAIST 신경과학-인공지능 융합연구센터에서 기반 기술을 활용해 인간 지능을 모사한 차세대 인공지능 모델을 개발하고, 아울러 딥마인드, IBM 인공지능 연구소, MIT, 옥스퍼드 대학 등 국제 공동연구 협약 기관과 공동연구를 통해 기술의 파급력을 높여나갈 계획이라고 말했다.
한편 이번 연구는 삼성전자 미래기술육성센터, 과학기술정보통신부 정보통신기획평가원 및 한국연구재단의 지원을 받아 수행됐다.
우리 대학 창업원이 기업가정신을 확산과 창업 활성화를 목적으로 '2023년 KAIST 창업인 동반성장 페어'와 '스타트업 KAIST 데모데이(Startup KAIST Demo Day)'를 연이어 개최한다. 먼저, 오는 31일부터 이틀간 대전 본원 KI빌딩(E4) 퓨전홀에서는 '2023년 KAIST 창업인 동반성장 페어'를 개최한다. 창업에 관심 있는 우리 대학 학생과 창업기업이 상호 교류하는 자리로 상생과 동반성장을 도모하기 위해 올해 처음 마련한 행사다. 25개의 KAIST 창업기업, 5개의 학생 예비창업팀 및 벤처캐피털(VC) 등이 참가한다. 창업기업 및 예비창업팀은 홍보부스를 운영하고 우수제품 시연·채용설명회를 포함한 기업 설명회가 진행될 예정이다. 창업원 관계자는 "재학생들은 다양한 KAIST 창업기업의 정보를 받아 적성에 부합하는 기업에 근무하는 기회를 얻고, 창업기업은 자사 홍보 및 비즈니스에 부합하는 모교 출신의 우수한 인력을 확보하는 교류의 자
2023-05-30우리 대학이 ㈜엠비트로(대표이사 이영우)로부터 KAIST의 첫 미국 캠퍼스로 추진 중인 KAIST-NYU 조인트캠퍼스의 공동연구 발전기금 10억 원을 유치했다. 이번 발전기금은 뉴욕대학교(이하, NYU)와 진행하고 있는 여러 공동연구 중 '스마트홈 헬스케어(Healthcare at Home)'분야의 다양한 솔루션 연구 및 개발에 사용할 계획이다. 이영우 ㈜엠비트로 대표이사는 "KAIST-NYU 조인트캠퍼스가 우리나라 기업의 미국 진출을 돕는 생태계로 조성되기를 바라는 마음으로 기부를 결정했다"라고 밝혔다. 우리 대학은 2021년 뉴욕 진출 계획을 밝힌 이후, 지난해 NYU 및 뉴욕시 등과 파트너십을 맺어왔다. 현재 두 학교는 조인트캠퍼스 협정 하에 인공지능(AI), 바이오 분야 등 총 9개 분야의 중장기 공동연구를 기획하고 있으며, 교환학생·부전공·복수전공·공동학위 등을 포함한 교육 분야 협력을 추진하고 있다. ㈜엠비트로의 발전
2023-05-29최근 각광받고 있는 이미지 검색, 데이터베이스, 추천 시스템, 광고 등의 서비스들은 마이크로소프트, 메타, 알리바바 등의 글로벌 IT 기업들에서 활발히 제공되고 있다. 하지만 실제 서비스에서 사용되는 데이터 셋은 크기가 매우 커, 많은 양의 메모리를 요구하여 기존 시스템에서는 추가할 수 있는 메모리 용량에 제한이 있어 이러한 요구사항을 만족할 수 없었다. 우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)에서 대용량으로 메모리 확장이 가능한 컴퓨트 익스프레스 링크 3.0 기술(Compute eXpress Link, 이하 CXL)을 활용해 검색 엔진을 위한 AI 반도체를 세계 최초로 개발했다고 25일 밝혔다. 최근 검색 서비스에서 사용되는 알고리즘은 근사 근접 이웃 탐색(Approximate Nearest Neighbor Search, ANNS)으로 어떤 데이터든지 특징 벡터로 표현할 수 있다. 특징 벡터란 데이터가 가지는 특징들 각각을
2023-05-25신생항원이란 암세포의 돌연변이에서 나온 단백질 조각 중 면역반응을 유도할 수 있는 항원들로서 항암 백신 개발의 이상적인 대상으로 주목받고 있다. 모더나 및 바이오엔텍은 암 치료를 위한 신생항원 백신용으로 개발하던 mRNA 플랫폼을 사용해 COVID-19 백신을 성공적으로 개발한 바 있으며, 현재 대규모 제약회사들과 함께 신생항원 암 백신 임상시험을 진행하고 있다. 이런 암 백신 개발을 위해 핵심적인 단계인 환자 맞춤형 신생항원 발굴에 활용될 인공지능 플랫폼이 개발되어 화제다. 우리 대학 바이오및뇌공학과 최정균 교수가 ㈜펜타메딕스와의 공동연구를 통해 개인 맞춤 치료용 암 백신에 사용될 수 있는 신생항원을 예측하는 인공지능(AI) 모델을 개발하고 웹서비스를 구축했다고 17일 밝혔다. 최정균 교수 연구팀은 딥러닝을 이용해 실제로 T 세포 면역반응을 유도할 수 있는 신생항원을 발굴하는 AI 모델을 개발했으며, 연구자들이 손쉽게 활용할 수 있는 웹서비스를 구축해 DeepNeo라는
2023-05-17김범준 생명화학공학과 교수가 우리 대학인 주관하고 현우문화재단(이사장 곽수일, 서울대학교 경영대학 명예교수)이 후원하는 `현우 KAIST 학술상' 수상자로 선정됐다. 시상식은 이달 16일 오전 10시 KAIST 학술문화관 정근모 홀, 리서치데이 행사에서 개최된다. 올해로 3회째 시행되는 `현우 KAIST 학술상'은 현우문화재단 곽수일 이사장이 KAIST에서 우수한 학술적 업적을 남긴 학자들을 매년 포상하고자 기부한 재원을 통해 제정된 상이다. 우리 대학은 현우재단 선정위원과 KAIST 교원포상추천위원회의 엄격한 심사를 거쳐 KAIST를 대표할 수 있는 탁월한 학술 업적을 이룬 교원을 매년 1명 선정해 상패와 포상금 1,000만원을 시상할 계획이다. 올해의 수상자로 선정된 김 교수는 고무처럼 늘어나면서도 이온 전달 특성이 매우 우수한 새로운 개념의 고분자 전해질 소재를 개발했고, 이를 이용해서 세계 최고 수준의 성능을 가지는 전고체전지를 구현하는 데 성공했다. 본 연구는
2023-05-16