〈 김 현 우 교수〉
우리 대학 화학과 김현우 교수 연구팀이 핵자기공명 분광분석기(NMR)를 통해 전하를 띠는 화합물의 광학 활성을 간단히 분석할 수 있는 기술을 개발했다.
연구 결과는 화학분야 학술지 ‘미국화학회지(Journal of the American Chemical Society)’ 10월 19일자 온라인 판에 게재됐다.
오른손과 왼손처럼 같은 물질이지만 거울상 대칭이 되는 화합물을 광학 이성질체라고 한다.
지구상의 생명체를 이루는 아미노산과 당은 하나의 광학 이성질체로 이뤄져 있어 새로운 화합물이 생체에 들어갈 때 광학 활성에 따라 서로 다른 생리학적 특징을 나타낸다. 따라서 신약을 개발할 때 광학 활성을 조절하고 분석하는 연구는 필수적이다.
광학 활성의 분석 방법으로 고성능 액체 크로마토그래피(HPLC)가 주로 사용되는데, 고가의 부품을 구비해야 하고 30분에서 1시간 정도의 시간이 소요되는 단점이 있다.
또한 신호의 감도 및 분해 기능이 떨어지고 사용할 수 있는 용매가 무극성에 한정되는 점 때문에 활용에 한계가 있었다.
반면 화합물의 분자 구조 분석에 활용되는 핵자기공명(NMR) 분광분석기는 1~5분 정도의 빠른 분석속도를 갖고 있다. 또한 화학 분야에서 분자의 구조를 확인하기 위한 필수 장비이기 때문에 대부분의 연구실에서 구비된 상태다.
하지만 이 핵자기공명 분광분석기를 통해 광학 활성 화합물의 신호를 분리하는 효과적인 방법은 보고되지 않았다.
연구팀은 기존에 알려지지 않은 음전하를 띠는 금속 화합물과 핵자기공명 분광분석기를 이용해 분석 방법을 개발했다.
음전하를 띤 금속 화합물이 양전하 및 음전하를 갖는 광학활성 화합물과 이온성 결합을 하면 핵자기공명 분광분석기를 통해 신호가 구별돼 광학 활성을 분석할 수 있는 원리이다.
이 방법을 사용하면 구조적 제약 없이 다양한 화합물을 분석할 수 있고, 비극성 및 극성 용매에 모두 적용 가능하다는 장점을 갖는다.
연구팀은 다양한 신약 및 신약후보 물질들은 전하를 띨 수 있는 작용기를 포함한 경우가 많아 연구팀의 새로운 분석 방법이 신약 개발에 직접적으로 활용 가능할 것으로 기대된다고 밝혔다.
김 교수는 “간단한 화학적 원리를 통해 기존의 틀을 깨는 혁신적 분석방법을 만들었다”며 “이 방법이 신약개발에 많이 활용되길 기대한다”고 말했다.
화학과 서민섭 박사과정(1저자)의 참여로 이루어진 이번 연구는 기초과학연구원(IBS) 나노물질 및 화학반응 연구단과 슈퍼컴퓨팅연구지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 금속 화합물과 이온성 상호작용으로 광학활성을 가진 화합물의 NMR 신호가 분리되는 현상
그림2. 다양한 광학활성 물질이 분리되는 그림
대면적의 빛을 활용하고 대기 중의 환경에서 0.02초 이내에 연료전지 등 차세대 에너지 저장 및 발전에 광범위하게 적용되는 고엔트로피 촉매 및 단일원자 촉매의 합성을 세계 최초로 구현했다. 우리 대학 전기및전자공학부 최성율 교수 연구팀과 신소재공학과 김일두 교수 연구팀이 공동연구를 통해 강한 빛을 다양한 탄소 기반 소재에 조사해, 0.02초 이내에 나노입자 촉매와 단일원자(single atom) 촉매를 진공 시설이 없는 대기 조건에서 합성하고 우수한 촉매 성능을 구현하는데 성공했다고 6일 밝혔다. 연구팀은 2022년 4월 제논 램프 빛을 조사해 금속산화물의 상(phase) 변화와 표면에 촉매 입자가 생성될 수 있음을 최초로 밝혔고 그 후속으로 소재의 광열효과를 유도하는 합성법에 대한 연구를 진행했다. 이에 초고온(1,800~3,000oC)과 빠른 승/하온 속도(105 oC/초)를 통해 기존의 합성법으로는 구현할 수 없는 촉매 입자를 합성하는 데 성공했다. 이번 기술은
2023-12-06우리 대학 생명과학과 강석조 교수 연구팀이 알레르기를 매개하는 중요한 면역세포인 호염구의 새로운 전구세포를 발견하고, 호염구 말단 분화단계에서 그 고유 기능을 획득하는 데 중요한 전사인자를 규명했다고 7일 밝혔다. 호염구(basophil)는 체내에 극소수로 존재하는 백혈구지만, 알레르기와 같이 제2형 면역 반응으로 매개되는 질환의 주된 작용 세포다. 호염구의 혈액 내 증감을 통해서 알레르기 반응 정도를 판별할 수 있고, 질환의 면역 반응의 중증도에도 영향을 미친다. 호염구는 인체 내로 유입된 알레르기 유발 물질에 특이적인 Immunoglobulin E (IgE)에 대한 수용체를 통해 활성화되면 탈과립(degranulation)과 면역조절 물질인 사이토카인(cytokine)을 비롯해 다양한 염증 유도 물질들을 분비한다. 이를 통하여 호염구는 알레르기 반응을 매개하고 다른 면역세포들의 침윤을 도와 염증 반응을 심화시킨다. 하지만, 이러한 호염구의 초기 분화 과정 연구에 비해 그 고
2023-11-07우리 대학 전기및전자공학부 최양규 교수, 명현 교수, 그리고 신소재공학과 이건재 교수 공동연구팀이 ‘인간의 뇌를 모방한 3차원 집적 뉴로모픽 반도체’를 개발하는 데에 성공했다. ‘인간의 뇌를 모방해 동일평면 상에 수평 집적한 뉴로모픽 반도체’를 개발(2021년 Science Advances 게재)하는 데에 성공했던 연구팀은, 뉴런 소자와 시냅스 소자를 상하부에 3차원 방식으로 수직 집적해, 보다 높은 집적도와 전력 효율을 가지는 뉴로모픽 반도체를 구현할 수 있음을 처음으로 보였다. 전기및전자공학부 졸업생 한준규 박사, 전기및전자공학부 이정우 박사과정과 김예은 박사과정, 그리고 신소재공학과 김영빈 박사과정이 공동 제1저자로 참여한 이번 연구는 저명 국제 학술지 ‘Advanced Science’ 2023년 9월 온라인판에 출판됐다. (논문명 : 3D Neuromorphic Hardware with Single T
2023-09-21전자 섬유는 최근 각광받고 있는 사용자 친화 웨어러블 소자, 헬스케어 소자, 최소 침습형 임플란터블 전자소자에 핵심 요소로 여겨져 활발하게 연구가 진행되고 있다. 하지만 고체 금속 전도체 필러(Conductive filler)를 사용한 전자 섬유를 늘려서 사용하려 할 경우, 전기전도성이 급격하게 감소해 전기적 성질이 망가진다는 단점이 있다. 우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅, 바이오및뇌공학과 박성준 교수 공동 연구팀이 높은 전도도와 내구성을 가지는 액체금속 복합체를 이용해 신축성이 우수한 전자 섬유를 개발했다고 25일 밝혔다. 전자 섬유의 늘어나지 않는 단점을 해결하기 위해 연구팀은 고체처럼 형상이 고정된 것이 아닌 기계적 변형에 맞춰 형태가 변형될 수 있는 액체금속 입자 기반의 전도체 필러를 제시했다. 액체금속 마이크로 입자는 인장이 가해질 경우에 그 형태가 타원형으로 늘어나면서 전기 저항 변화를 최소화할 수 있다. 하지만 그 크기가 수 마이크로
2023-07-25우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅 교수 공동 연구팀이 기존의 반도체공정을 이용하여 고해상도로 패터닝할 수 있는 초기전도성이 확보된 액체금속 기반의 신축성 전도체 필름 제작 방법을 개발했다고 밝혔다. 신축성 전도체는 최근 각광받고 있는 사용자 친화형 웨어러블 소자, 신축성 디스플레이, 소프트 로봇의 전자 피부 개발에 핵심 요소로 여겨져 활발하게 연구가 진행되어왔다. 최근 신축성 전도체 중 하나로 높은 전기전도성과 신축성, 낮은 기계적 강성을 동시에 만족하고 안정성도 어느정도 확보가 된 갈륨기반의 액체금속 입자가 전도성 필러로 각광받고 있다. 하지만 액체금속 입자의 경우에는 기계적 불안정성으로 인하여 제한된 형태의 용액공정으로만 사용이 가능했기 때문에, 기존의 금속을 전자소자에 통합하는 방법인 반도체 공정을 이용하는 것이 어려웠다. 이런 이유로, 액체금속 입자 기반의 전자소자는 지금까지 연구실 수준에서 노즐 프린팅, 스크린 프린팅과 같은 제한된 방법으로
2023-07-17