< 윤동기 교수 >
우리 학교 나노과학기술대학원 윤동기 교수 연구팀은 자기조립(self-assembly) 현상을 이용해 매우 정밀한 나선형 나노구조체를 개발해 세계적 학술지인 미국립과학원회보(PNAS) 10월 7일자에 논문이 게재됐다.
이번에 개발된 기술로 3차원구조 중에서도 가장 구현하기 어렵다는 나선형 구조를 넓은 면적에 다양하게 변형해 만들 수 있다. 액정(액체와 결정의 중간상태)물질로 만든 이 구조는 20~200nm(나노미터) 크기의 제한된 공간에서 균일한 나선 형태를 유지했다. 또 나노구조체의 지름이 커짐에 따라 나선 패턴의 간격도 일정하게 늘어나는 특성을 보였다.
이 기술을 활용하면 전자기장에 민감하게 반응하는 액정 소재의 고유성질과 융합해 고효율의 광전자 소자 개발에 도움이 될 것으로 학계는 기대하고 있다.
나아가 현재 반도체 제조공정에서 사용 중인 2차원 광식각공정에서 벗어나 3차원 패터닝 기술로도 발전시킬 수 있다. 연구팀의 기술을 기반으로 3차원 반도체가 개발되면 지금보다 최소 수백배 많은 데이터를 저장할 수 있게 된다. 또 공정을 획기적으로 줄여 제조비용도 크게 절감할 수 있을 것으로 전망된다.
이번 연구의 핵심 기술인 ‘한정된 공간에서의 자기조립’이란, 아이들의 장난감인 레고블럭 놀이처럼 주위의 환경(온도, 농도, pH 등)에 따라 물리적으로 조립과 분리가 가능한 다양한 연성재료(고분자, 액정, 생체분자 등)를 수십 나노미터의 공간 속에서 복잡한 나노구조체를 제어하는 기술이다.
연구팀은 전기화학적 반응을 통해 만들 수 있는 다공성 양극산화알루미늄막을 이용해 수십 나노미터 수준의 한정된 공간을 만들었다. 이후 수 나노미터 수준에서 휘어져 있는 액정 분자가 형성하는 나선형 나노구조체를 그 공간 속에서 형성시켜 독립적으로 제어된 나선 나노구조체를 구현하는 데 성공했다.
윤동기 교수는 이번 연구에 대해 “액정물질이 형성하는 나선 나노구조체 제어의 물리·화학적 원리 규명에 세계최초로 성공했다”며 “이번 기술로 다양한 유기분자가 이루는 복잡한 나노구조체들을 기판의 표면 개질 및 한정된 공간을 이용해 제어할 수 있어 향후 유기분자 기반 나노구조체 연구에 커다란 기여를 할 것”이라고 연구 의의를 설명했다.
이와 함께 “개발된 원천기술을 바탕으로 NT(나노테크놀로지)와 IT(정보테크놀로지)가 접목될 수 있는 전기가 마련돼 LCD 등 액정관련 분야에서 차세대 신성장동력을 창출할 수 있을 것”이라고 말했다.
KAIST 나노과학기술대학원 윤동기 교수팀(제1저자: 김한임 박사과정, 이선희 박사과정)이 주도하고 포항가속기연구소 신태주박사, 미국 메릴랜드주립대학 이상복 교수와 콜로라도주립대학 노엘 클락(Noel Clark) 교수가 참여한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 일반연구자지원사업(우수신진), 나노소재원천기술개발사업, BK21 플러스사업의 지원으로 수행됐다.
그림1. 나선 나노구조체의 전자현미경 사진과 개념도
A. 다공성 양극알루미늄 나노채널 속에서 형성된 단일 나선 나노구조체(노란선 기준 아래)와 미처 나노 채널속에 들어가지 못해 형태 및 성장 방향이 불규칙하게 존재하는 나선 나노구조체(노란선 기준 위)
B. 나선 나노구조체가 양극산화물 속에 들어가는 현상을 보여주는 개념도. 양극산화물 나노채널의 지름은 20~200nm, 전체 막 두께는 5 um~ 수십 um로 조절이 가능
C. B방법을 통해 형성된 나선 나노구조체는 나선 반주기(half-pitch)가 100~120nm 범위에서 1nm 간격으로 조절이 되며 지름이 20~80 nm까지 자유롭게 제어할 수 있음
그림2. 제조된 나선 나노구조체의 전자현미경 사진
30nm(A), 60nm(B), 80nm(C) 지름의 다공성 양극알루미늄 나노채널(왼쪽-위) 속에서 형성된 나선 나노구조체 단면의 주사전자현미경 사진(왼쪽-아래)과 나노채널이 제거된 나선 나노구조체의 투과전자현미경 사진(오른쪽)
나노채널의 지름이 증가할수록 아주 서서히 나선 나노구조체의 나선 반주기가 100nm(A)에서 117nm(C)까지 증가함을 관찰할 수 있었고, 꼬인 부분의 각도(Ψ)의 증가를 통해 나선 나노구조체의 크기를 1nm수준에서 미세하게 제어 가능함을 보였음
그림3. 대표 그림
최근, 나노 스케일의 물리/화학 센서부터 미터 스케일의 에너지 수확 소자까지, 전자 소자에 적용되는 소재 및 구조들의 형태가 점점 고도화되며 복잡한 형태로 발전해나가고 있다. 그에 따라 범용성이 높은 3차원 구조체 제작 기술의 개발에 많은 연구자들이 관심을 두고 있다. 우리 대학 기계공학과 박인규 교수와 한국기계연구원(KIMM) 정준호 전략조정본부장 공동연구팀이 `차세대 3차원 나노구조체 인쇄 기술'을 개발했다고 4일 밝혔다. 공동연구팀은 신축 기판 위 2차원 나노구조체의 안정적 구현과 인쇄될 기판의 표면 마이크로 구조 설계를 통해 3차원 나노구조체를 인쇄할 수 있음을 처음으로 선보였다. 기계공학과 안준성 박사후연구원이 제1 저자로 참여한 이번 연구는 저명 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 2023년 2월 온라인판에 출판됐다. (논문명: Nanoscale three-dimensional fabrication based on
2023-04-04전 세계적으로 기후변화 문제가 심각해짐에 따라 이를 기후 위기로 인식하고 이에 대응하는 적극적인 관심과 노력이 요구되고 있다. 그중 이산화탄소를 활용해 재자원화하는 여러 방법 중에서 전기화학적 이산화탄소 전환 기술은 전기에너지를 이용해 이산화탄소를 유용한 화학물질로 전환할 수 있는 기술이다. 이는 설비 운용이 용이하고, 태양 전지나 풍력에 의해 생산된 재생 가능한 전기에너지를 이용할 수 있으므로 온실가스 감축 및 탄소 중립 달성에 기여하는 친환경 기술로 많은 관심을 받고 있다. 우리 대학 생명화학공학과 이현주 교수와 이상엽 특훈교수 공동연구팀이 전기화학적 이산화탄소 전환과 미생물 기반의 바이오 전환을 연계한 하이브리드 시스템을 개발해 이산화탄소로부터 높은 효율로 바이오 플라스틱을 생산하는 기술 개발에 성공했다고 30일 밝혔다. 유사한 시스템 대비 20배 이상의 세계 최고 생산성을 보여준 해당 연구 결과는 국제 학술지인 ‘미국국립과학원회보(PNAS)'에 3월 27일 字
2023-03-30우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 인공지능 기반 약물 상호작용 예측 기술을 고도화해, 코로나19 치료제로 사용되는 팍스로비드(PaxlovidTM) 성분과 기존 승인된 약물 간의 상호작용 분석 결과를 논문으로 발표했다고 16일 밝혔다. 이번 논문은 국제저명학술지인 「미국국립과학원회보 (PNAS)」誌’ 3월 13일자 온라인판에 게재됐다. ※ 논문명 : Computational prediction of interactions between Paxlovid and prescription drugs ※ 저자 정보 : 김예지(한국과학기술원, 공동 제1 저자), 류재용(덕성여자대학교, 공동 제1 저자), 김현욱(한국과학기술원, 공동 제1 저자), 이상엽(한국과학기술원, 교신저자) 포함 총 4명 연구팀은 이번 연구에서 2018년에 개발한 인공지능 기반의 약물 상호작용 예측 모델인 딥디디아이(DeepDDI)를 고도화한 딥디디아이2(DeepDDI2)를 개발했다
2023-03-16우리 대학 신소재공학과 강정구 교수 연구팀이 물과 산소만으로 햇빛을 이용해 과산화수소를 생산하는 고효율 촉매를 개발했다고 31일 밝혔다. 과산화수소는 주로 소독, 염색, 산화제, 의약품, 반도체, 디스플레이, 로켓 추진연료 등 다양한 산업군에 쓰이는 유용한 자원이다. 연구팀이 개발한 나노구조체 촉매는 빛을 흡수해 산소 분자를 과산화수소 분자로 선택적으로 환원시키며, 지구에 풍부하고 친환경적인 물을 산화제로 이용하기 때문에 친환경적이고 경제적인 원천기술이다. 이 기술은 현재 공정에서 이용되는 고가의 팔라듐 촉매보다 각각 1,500배, 4,500배, 115,000배 저렴한 코발트, 티타늄, 철 산화물을 이용했기 때문에 경제성이 뛰어날 뿐만 아니라, 환경 문제를 유발하는 유기화합물 없이 물과 산소, 햇빛만으로 과산화수소를 생산하기 때문에 친환경적인 특성을 가진다. 김건한 박사(現 옥스포드 대학교 화학과, 우리 대학 신소재공학과 졸업)가 제1 저자로 참여하고, 우리 대학 화학
2022-03-31수학과 실험을 결합한 융합연구를 통해 생체시계가 안정적 리듬을 유지하면서도 환경변화에 쉽게 적응할 수 있는 원리가 밝혀졌다. 우리 대학 수리과학과 김재경 교수가 이끄는 기초과학연구원(IBS) 수리 및 계산과학 연구단 의생명 수학 그룹과 우리 대학 수리과학과 연구팀, 그리고 아주대 의과대학 뇌과학과 김은영 교수 연구팀은 공동연구를 통해 초파리 뇌의 생체시계 뉴런들의 생체시계 작동원리를 분석했다. 생체시계(Circadian clock)는 생명체가 24시간 주기에 맞춰 살아갈 수 있도록 행동과 생리 작용을 조절하는 역할을 한다. 예를 들어, 생체시계는 밤 9시경이 되면 뇌에서 멜라토닌 호르몬 분비를 유발해 일정 시간이 되면 수면을 취할 수 있도록 하는 등 우리 운동 능력이나 학습 능력에 이르는 거의 모든 생리 작용에 관여한다. 따라서, 평소에는 일정한 시간을 안정적으로 몸에 제시하면서, 동시에 계절 변화에 따른 낮밤의 길이 변화나 해외여행으로 인한 시차 등 환경변화가 생겼을 때는 새
2022-02-16