< (왼쪽부터) 신소재공학과 홍승범 교수, 염지원 박사과정 >
우리 대학 신소재공학과 홍승범 교수 연구팀이 시뮬레이션을 기반으로 한 신소재 데이터 분석을 위한 인공지능을 개발했다고 24일 밝혔다.
최근 컴퓨팅 파워가 기하급수적으로 증가함에 따라 인공지능을 활용한 다양한 응용들이 실생활에 활용되고 있으며, 이에 인공지능을 활용해 신소재 데이터를 고속으로 분석하고 소재를 역설계하는 기술의 연구 역시 가속화되고 있다.
최근 인공지능의 효율 및 정확도를 증가시키는 연구를 바탕으로 자율주행 자동차, 데이터베이스 기반의 마케팅 및 물류 시스템 보조 등의 분야에 인공지능의 활용이 높아지고 있다. 특히 신소재 개발에 장시간이 소요되는 점을 고려할 때, 소재 및 공정 개발에 인공지능을 활용해 다양한 구조 및 물성 데이터 사이의 상관관계를 빠르게 분석해 신소재 개발 소요 시간을 획기적으로 줄일 수 있는 인공지능 방법론이 주목을 받고 있다.
그러나 신소재 데이터의 경우, 대량의 유의미한 실험 데이터를 구하기 어렵고 기업들이 중요한 데이터는 대외비로 취급하고 있어서 인공지능을 소재 데이터 영역에 적용하는 것이 상당히 어려운 것이 현실이다. 이런 데이터의 다양성, 크기 및 접근성 문제가 해결돼야 하며, 이를 보완하기 위해 생성 모델 및 적절한 데이터의 합성에 관한 연구가 진행되고 있다. 인공지능의 성능 향상을 위해 생성되는 데이터 또한 실제 소재가 가지는 물리적 제약을 따라야 하며, 소재 데이터의 재료적 특징을 파악할 수 있는 기술이 필요하다.
홍승범 교수 연구팀이 이번에 개발한 인공지능 훈련 방법론은 훈련을 위해 생성되는 데이터가 물리적 제약을 공유하도록 위상 필드 시뮬레이션을 활용해 기초 데이터를 형성하고 소재 데이터가 가지고 있는 실제 측정 과정에서 발생하는 다양한 잡음, 입자의 분포 정보 및 입자의 경계를 모사해 크기가 작은 소재 데이터의 한계를 해결했다. 기존에 수작업으로 작성한 소재 데이터를 활용한 인공지능과의 상 분리 성능을 비교했으며, 생성된 데이터의 모사 요소가 상 분리에 영향을 미치는 영향을 파악했다.
아울러 이번 연구에서 제시하는 소재 데이터 생성을 활용한 인공지능 훈련 방법은 기존의 수작업으로 훈련 데이터를 준비하는 시간을 크게 단축할 수 있으며, 인공지능의 전이 학습 및 다양한 물리적 제약을 바탕으로 하는 위상 필드 시뮬레이션 활용을 바탕으로 다양한 소재 데이터에 빠르게 적용할 수 있는 장점이 있다.
< 그림 1. 시뮬레이션을 활용해 훈련한 인공지능의 이미지 상 분리 결과 >
< 그림 2. 합성 훈련 데이터의 변형과 그에 따른 인공지능 네트워크의 상 분리 성능 비교 >
홍승범 교수는 "인공지능은 분야를 막론하고 다양한 영역에서 활용되고 있으며, 소재 분야 역시 인공지능의 도움을 바탕으로 신소재 개발을 더욱 빠르게 완료할 수 있는 세상을 맞이할 것이다ˮ라며, "이번 연구 내용을 신소재 개발에 바로 적용하기에는 데이터 합성 측면에서의 여전히 보강이 필요하지만, 소재 데이터 활용에 큰 문제가 됐던 훈련 데이터를 준비하는 긴 시간을 단축해 소재 데이터의 고속 분석 가능성을 연 것에 연구의 의의가 있다ˮ고 말했다.
신소재공학과 염지원 연구원, 노스웨스턴(Northwestern) 대학의 티베리우 스탄(Tiberiu Stan) 박사가 공동 제1 저자로 참여한 이번 연구는 노스웨스턴 대학의 피터 부리스(Peter Voorhees) 교수 연구실과 함께 진행됐으며 연구 결과는 국제 학술지 `악타 머터리얼리아(Acta Materialia)'에 게재됐다. (논문명: Segmentation of experimental datasets via convolutional neural networks on phase field simulations)
한편 이번 연구는 KAIST 글로벌특이점 연구 지원으로 수행됐다.
최근 각광받고 있는 이미지 검색, 데이터베이스, 추천 시스템, 광고 등의 서비스들은 마이크로소프트, 메타, 알리바바 등의 글로벌 IT 기업들에서 활발히 제공되고 있다. 하지만 실제 서비스에서 사용되는 데이터 셋은 크기가 매우 커, 많은 양의 메모리를 요구하여 기존 시스템에서는 추가할 수 있는 메모리 용량에 제한이 있어 이러한 요구사항을 만족할 수 없었다. 우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)에서 대용량으로 메모리 확장이 가능한 컴퓨트 익스프레스 링크 3.0 기술(Compute eXpress Link, 이하 CXL)을 활용해 검색 엔진을 위한 AI 반도체를 세계 최초로 개발했다고 25일 밝혔다. 최근 검색 서비스에서 사용되는 알고리즘은 근사 근접 이웃 탐색(Approximate Nearest Neighbor Search, ANNS)으로 어떤 데이터든지 특징 벡터로 표현할 수 있다. 특징 벡터란 데이터가 가지는 특징들 각각을
2023-05-25신생항원이란 암세포의 돌연변이에서 나온 단백질 조각 중 면역반응을 유도할 수 있는 항원들로서 항암 백신 개발의 이상적인 대상으로 주목받고 있다. 모더나 및 바이오엔텍은 암 치료를 위한 신생항원 백신용으로 개발하던 mRNA 플랫폼을 사용해 COVID-19 백신을 성공적으로 개발한 바 있으며, 현재 대규모 제약회사들과 함께 신생항원 암 백신 임상시험을 진행하고 있다. 이런 암 백신 개발을 위해 핵심적인 단계인 환자 맞춤형 신생항원 발굴에 활용될 인공지능 플랫폼이 개발되어 화제다. 우리 대학 바이오및뇌공학과 최정균 교수가 ㈜펜타메딕스와의 공동연구를 통해 개인 맞춤 치료용 암 백신에 사용될 수 있는 신생항원을 예측하는 인공지능(AI) 모델을 개발하고 웹서비스를 구축했다고 17일 밝혔다. 최정균 교수 연구팀은 딥러닝을 이용해 실제로 T 세포 면역반응을 유도할 수 있는 신생항원을 발굴하는 AI 모델을 개발했으며, 연구자들이 손쉽게 활용할 수 있는 웹서비스를 구축해 DeepNeo라는
2023-05-17김범준 생명화학공학과 교수가 우리 대학인 주관하고 현우문화재단(이사장 곽수일, 서울대학교 경영대학 명예교수)이 후원하는 `현우 KAIST 학술상' 수상자로 선정됐다. 시상식은 이달 16일 오전 10시 KAIST 학술문화관 정근모 홀, 리서치데이 행사에서 개최된다. 올해로 3회째 시행되는 `현우 KAIST 학술상'은 현우문화재단 곽수일 이사장이 KAIST에서 우수한 학술적 업적을 남긴 학자들을 매년 포상하고자 기부한 재원을 통해 제정된 상이다. 우리 대학은 현우재단 선정위원과 KAIST 교원포상추천위원회의 엄격한 심사를 거쳐 KAIST를 대표할 수 있는 탁월한 학술 업적을 이룬 교원을 매년 1명 선정해 상패와 포상금 1,000만원을 시상할 계획이다. 올해의 수상자로 선정된 김 교수는 고무처럼 늘어나면서도 이온 전달 특성이 매우 우수한 새로운 개념의 고분자 전해질 소재를 개발했고, 이를 이용해서 세계 최고 수준의 성능을 가지는 전고체전지를 구현하는 데 성공했다. 본 연구는
2023-05-16우리 대학 김재철AI대학원(원장 정송)과 기술가치창출원(원장 최성율)이 공동 주관하여 ‘KAIST AI기술설명회 2023’을 5월 12일(금) 서울 COEX에서 개최했다. 오전 세션에서는 최근 사회에 큰 파장을 일으키고 있는 생성 AI분야의 양대 주제인 영상생성 모델 (Diffusion Model)과 대형 언어생성 모델 (ChatGPT 등)에 대해 우리 대학 김재철AI대학원 예종철 교수, 서민준 교수가 각각 튜토리얼을 진행했다. 또한 인공지능 기술을 사용하여 산업설비의 에너지 비용을 절감한 사례에 대해 최재식 교수가 발표했다. 이어서 KAIST 기술이전 절차(지식재산 및 기술이전센터 김권 센터장)와 KAIST 장기 기업자문 특화 플랫폼인 ILP 프로그램(산학협력센터 김성완 센터장)에 대해서 일반에 소개하는 자리를 가졌다. 기술소개 세션 1부에서는 ▲자기 피드백을 활용한 고성능 챗봇 개발 기술(서민준 교수) ▲대형 언어모델 교사를 활용한 소형 추론 모델
2023-05-15우리 대학 전산학부 홍승훈 교수가 이끄는 연구팀이 지난 5월 1일부터 5월 5일에 열린 기계학습 분야의 최우수 국제학술대회인 ‘표현 학습 국제 학회 2023(International Conference on Learning Representation, 이하 ICLR 2023)’에서 최우수논문상 (Outstanding Paper Award)를 수상했다고 5일 밝혔다. ICLR 2023은 인공지능 분야의 가장 권위 있는 학회 중 하나로서, 구글 스칼라 h-5 인덱스 기준 기계학습 분야의 1위에 올라있으며, 모든 과학 분야의 출판물 중 9위를 기록하고 있다. 올해 최우수논문상은 전체 1,574편의 논문 중 상위 4편에 주어졌다. 홍 교수팀의 ICLR 최우수논문상 수상은 한국인으로서는 최초이며, 주요 기계학습 학회에서 국내 기관이 주축이 되어 진행한 연구로 최우수논문상을 수상한 최초의 사례이기도 하다. 전산학부 김동균 박사과정(제1 저자), 김진우 박사과
2023-05-08