< AI대학원 최재식 교수 >
< (왼쪽부터) 한지연 박사과정, 최환일 박사과정, 정해동 박사과정, 알리 투씨(Ali Tousi) 박사과정 >
우리 대학 AI대학원 최재식 교수(설명가능 인공지능연구센터장) 연구팀이 심층 학습(이하 딥러닝) 생성모델의 오류 수정 기술을 개발했다고 25일 밝혔다.
최근 딥러닝 생성모델(Deep Generative Models)은 이미지, 음성뿐만 아니라 문장 등 새로운 콘텐츠를 생성하는 데 널리 활용되고 있다. 이런 생성모델의 발전에도 불구하고 최근 개발된 생성모델도 여전히 결함이 있는 결과를 만드는 경우가 많아, 국방, 의료, 제조 등 중요한 작업 및 학습에 생성모델을 활용하기는 어려운 점이 있었다.
최 교수 연구팀은 딥러닝 내부를 해석하는 설명가능 인공지능 기법을 활용해, 생성모델 내부에서 이미지 생성과정에서 문제를 일으키는 유닛(뉴런)을 찾아 제거하는 알고리즘을 고안해 생성모델의 오류를 수리했다. 이러한 생성 오류 수리 기술은 신경망 모델의 재학습을 요구하지 않으며 모델 구조에 대한 의존성이 적어, 다양한 적대적 생성 신경망에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다. 또한, 고안된 기술은 딥러닝 생성모델의 신뢰도를 향상해 생성모델이 중요 작업에도 적용될 수 있을 것으로 기대된다.
AI대학원의 알리 투씨(Ali Tousi), 정해동 연구원이 공동 제1 저자로 참여한 이번 연구는 `국제 컴퓨터 비전 및 패턴인식 학술대회 (IEEE Conference on Computer Vision and Pattern Recognition, CVPR)'에서 6월 23일 발표됐다. (논문명: Automatic Correction of Internal Units in Generative Neural Networks, CVPR 2021).
적대적 생성 신경망은 생성기와 구분기의 적대적 관계를 이용한 모델로서, 생성 이미지의 품질이 높고 다양성이 높아, 이미지 생성뿐만 아니라 다양한 분야(예, 시계열 데이터 생성)에서 주목받고 있다.
딥러닝 생성모델의 성능을 향상하기 위해서 적대적 생성기법 및 생성기의 새로운 구조 설계 혹은 학습 전략의 세분화와 같은 연구가 활발히 진행되고 있다. 그러나 최신 적대적 생성 신경망 모델은 여전히 시각적 결함이 포함된 이미지를 생성하고 있으며, 재학습을 통해서 이를 해결하기에는 오류 수리를 보장할 수 없으며, 많은 학습 시간과 비용을 요구하게 된다. 이렇게 규모가 큰 최신 적대적 생성 신경망 모델의 일부 오류를 해결하기 위해 모델 전체를 재학습하는 것은 적합하지 않다.
연구팀은 문제 해결을 위해 생성 오류를 유도하는 딥러닝 내부의 유닛(뉴런)을 찾아 제거하는 알고리즘을 개발했다. 알고리즘은 딥러닝 모델의 시각적 결함의 위치를 파악하고, 딥러닝 모델 내 여러 계층에 존재하는 오류를 유발한 유닛을 찾아서 활성화하지 못하도록 하여 결함이 발생하지 않도록 했다.
연구팀은 설명가능 인공지능 기술을 활용해 시각적 결함이 생성된 이미지의 어느 부분에 분포하는지, 또 딥러닝 내부의 어떤 유닛이 결함의 생성에 관여하는지 찾을 수 있었다. 개발된 기술은 딥러닝 생성모델의 오류를 수리할 수 있고, 생성모델의 구조에 상관없이 적용할 수 있다.
< 그림 1. 오류를 유발하는 내부 유닛과 계층별 유닛 제거에 대한 모식도 >
< 그림 2. 시각적 결함이 포함된 생성 이미지에 대한 수리 결과 >
연구팀은 전통적인 구조를 가지는 `진행형 생성모델(Progressive GAN, PGGAN)'에서 개발 기술이 효과적으로 생성 오류를 수리할 수 있음을 확인했다. 수리 성능은 매사추세츠 공과대학(MIT)이 보유한 수리 기술 대비 FID 점수가 10점 정도 감소했으며, 사용자 평가에서 시험 이미지 그룹의 약 50%가 결함이 제거됐고, 약 90%에서 품질이 개선됐다는 결과를 얻었다. 나아가 특이 구조를 가지는 `StyleGAN2'와 `U-net GAN'에서도 생성 오류 수리가 가능함을 보임으로써 개발 기술의 일반성과 확장 가능성을 보였다.
연구팀이 개발한 생성모델의 오류 제거 기술은 다양한 이미지 외에도 다양한 생성모델에 적용돼 모델의 결과물에 대한 신뢰성을 높일 것으로 기대된다.
공동 제1 저자인 알리 투씨와 정해동 연구원은 "딥러닝 생성모델이 생성한 결과물에 있는 시각적 오류를 찾고, 이에 상응하는 활성화를 보이는 생성모델 내부의 유닛을 순차적으로 제거함으로써 생성 오류를 수리할 수 있음을 보였다ˮ라며 이는 "충분히 학습된 모델 내부에 미학습 혹은 잘못 학습된 내부요소가 있음을 보여주는 결과다ˮ라고 말했다.
한편 이번 연구는 2021년도 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받은 혁신성장동력프로젝트 설명가능인공지능 및 한국과학기술원 인공지능 대학원 프로그램과제를 통해서 수행됐다.
우리 대학은 9월 21일 9시 30분(현지 시각) 미국 뉴욕시의 뉴욕대(이하 NYU) 폴슨센터에서 이종호 과학기술정보통신부 장관, 린다 밀스(Linda G. Mills) NYU 총장, 이광형 우리 대학 총장 등이 참석한 자리에서 NYU-KAIST 글로벌 인공지능(이하 AI) & 디지털 거버넌스 컨퍼런스(Digital Governance Conference)를 개최했다. 이 자리에서 KAIST와 NYU는 국내외 AI 및 디지털 석학, 교수 및 학생 등 총 300여 명이 모인 가운데 ‘글로벌 AI와 디지털 거버넌스'에 대한 방향과 정책을 논의했다. 이번 컨퍼런스는 AI와 디지털 기술의 새로운 방향 모색과 함께 규제에 대한 공감대를 모으는 국제적 논의 마당이었다. 이광형 총장의 환영사 및 이종호 과학기술정보통신부 장관 축사에 이어서 프린스턴대와 옥스퍼드대를 졸업하고 현재 NYU 교수 겸 바이오윤리 센터장 매튜 리아오 교수(Prof. Matthew Liao)의
2023-09-22최근 유전공학 기술의 발전으로 형광현미경을 활용해 살아있는 생체조직 내 신호를 형광신호로 변환하여 연속적으로 촬영하고 측정하는 기술들이 개발되어 활용되고 있다. 그러나, 생체조직에서 방출되는 형광신호가 미약하기 때문에 빠르게 변화하는 신경세포의 전기신호 등의 신호를 측정할 경우, 매우 낮은 신호대잡음비를 가지게 되어 정밀한 측정이 어려워지게 된다. 우리 대학 전기및전자공학부 윤영규 교수 연구팀이 기존 기술 대비 10배 이상 정밀하게 생체 형광 신호 측정을 가능하게 하는 인공지능(AI) 영상 분석 기술을 개발했다고 20일 밝혔다. 윤 교수 연구팀은 별도의 학습 데이터 없이, 낮은 신호대잡음비를 가지는 형광현미경 영상으로부터 데이터의 통계적 분포를 스스로 학습해 영상의 신호대잡음비를 10배 이상 높여 생체신호를 정밀 측정할 수 있는 기술을 개발했다. 이를 활용하면 각종 생체 신호의 측정 정밀도가 크게 향상될 수 있어 생명과학 연구 전반과 뇌 질환 치료제 개발에 폭넓게 활용
2023-09-20우리 대학 산업디자인학과 강이연 교수가 영국 하원 의회 소속 문화, 미디어, 스포츠 위원회(Culture, Media and Sport Committee, 이하 DCMS 위원회)의 초청을 받아 참여한 「연결된 기술: 인공지능과 창의기술 보고서(Connected tech: AI and creative technology Report」가 지난달 30일 발행됐다. 강 교수는 국제적으로 활동하는 미디어 아티스트이자 연구자, 교육자로서 지난해 11월 DCMS 위원회의 공청회(Enquiry Evidence Session)에 참여했으며, 이 보고서는 당시의 논의를 토대로 작성됐다. 해당 공청회는 영국 정부 부처와 국회의원들이 관심 있는 분야의 전문가를 초청해 의견을 듣는 공식회의로 이 자리에서 나온 전문가들의 의견은 추후 정책 수립에 반영이 된다. 강이연 교수는 '연결된 기술: 현명한가 사악한가?(Connected tech: smart or sinister?)'라는 주제로 열린 세션에 참여
2023-09-08우리 대학이 다음 달 1일부터 두 달간 광화문 광장 해치마당에서 인공지능을 활용한 시각 영상 작품을 전시한다. 산업디자인학과 이창희 교수팀(아트: 송유택, 오주원, 이정아, 김대욱. 보조: 이윤지, 조해나)이 제작한 '서브웨이 시냅스(Subway Synapse)'라는 제목의 작품은 서울시가 주최하는 '하이 에이아이(Hi, Ai)'의 일환으로 전시된다. 첨단 기술을 어려운 매체예술이 아닌 이해하기 쉬운 시민 친화적 미술 작품으로 전시하기 위해 기획된 행사다. 이 교수팀의 작품은 서울의 지하철이 단순한 이동 수단을 넘어 인간의 신경세포를 연결하는 시냅스(Synapse)처럼 우리의 일상을 밀접하게 연결한다는 영감을 바탕으로 만들어졌다. 서울의 여러 공간과 모습을 연결하는 하나의 완전한 시스템으로서의 지하철을 두 개의 영상을 합성하는 크로마키 기법으로 촬영한 후 다양한 생성 인공지능 기술로 상상력을 더해 시각화했다. 자연, 번잡한 거리, 현대적인 스카이라인, 우리나라의 특색있는
2023-08-30파킨슨병 같은 만성 퇴행성 뇌 질환의 경우, 생존 환자의 뇌세포에 직접 접근이 제한적이기 때문에, 뇌 질환 환자의 세포 데이터를 토대로 환자 질병의 메커니즘 하위 유형을 인공지능으로 예측하는 것은 시도된 바가 없다. 우리 대학 뇌인지과학과 최민이 교수 연구팀이 영국 프랜시스 크릭 연구소(Francis Crick Institute)와의 공동 연구로 파킨슨병 환자의 개인별 질병 하위 유형을 예측하는 인공지능 기반의 플랫폼을 개발했다고 15일 밝혔다. 최민이 교수 연구팀이 개발한 플랫폼은 파킨슨병 환자의 역분화 만능 줄기세포(hiPSC)에서 분화된 신경 세포의 핵, 미토콘드리아, 리보솜 이미지 정보만 학습해 파킨슨 환자의 병리적 하위 유형을 정확하게 예측한다. 이 기술을 활용하면 환자별로 다르게 나타나는 파킨슨병 양상을 겉으로 보이는 발현형이 아닌 생물학적 메커니즘별로 분류할 수 있다. 이를 통해 원인 미상의 파킨슨병 환자가 속한 분자 세포적 하위 유형별로 진단이 가능해져
2023-08-16