- 수 나노미터 직경의 완전히 순수한 그래핀 양자점 개발 -
- “바이오센서, 광센서, 바이오 이미징 등 다양한 분야로 응용 가능” -
우리 학교 생명화학공학과 서태석(42) 교수와 물리학과 조용훈(48) 교수 공동 연구팀은 흑연 나노입자를 이용해 순수한 그래핀 양자점을 개발하는데 성공하고 그래핀 양자점에서의 방출되는 형광 빛의 원인을 밝혔다.
연구결과는 나노분야의 권위 있는 학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 7월 19일자 표지논문(Back Cover)으로 게재됐다.
이번에 개발된 그래핀 양자점은 흑연으로 제작돼 인체에 무해한 친환경 소재라는 점에서 바이오센서, 광센서, 바이오 이미징 등 다양한 응용 분야에 적용할 수 있을 것으로 기대된다.
그래핀 양자점은 수 나노미터 이하의 직경을 갖고 있으며, 가시광 영역의 형광을 방출하는 특징이 있다.
기존 그래핀 양자점은 대부분 산화된 그래핀 양자점을 다시 환원하는 방식으로 제작했다. 따라서 그래핀 양자점 구조에 존재하는 순수한 탄소 결합과 산소 결합에 의한 형광 특성이 혼합돼 있어 발광의 근원을 정확하게 구분하기 어려웠다. 또 복잡한 화학적 방법으로 제작해 생산성이 떨어졌다.
연구팀은 그래핀 양자점의 정확한 발광 원인을 규명하기 위해 수 나노미터 크기의 흑연 나노입자를 이용해 순수한 그래핀 양자점을 산화반응 과정 없이 제작했다. 또 일반적으로 사용되고 있는 산화 과정을 흑연 나노입자에 적용해 산화 그래핀 양자점을 간단하게 제작하는 방법도 개발했다.
연구팀은 개발된 순수한 그래핀 양자점과 산화 그래핀 양자점으로부터 각각 파란색과 녹색 형광의 빛을 방출하는 것을 확인했는데, 이 두 종류의 양자점들은 산소 결합의 유무에 근본적 차이가 있다는 것을 밝혔다.
이와 함께 다양한 광분석 기법을 이용해 순수한 그래핀 양자점의 파란색 형광 현상이 벤젠 형태의 탄소 결합에 의한 것임을 규명하고, 산화 그래핀 양자점의 녹색 발광이 그래핀에 결합된 다양한 산소 기능기에 의한 것임을 규명했다.
서태석 교수는 “순수한 그래핀 양자점의 개발과 발광 특성 분석을 통해 기존에 뚜렷하게 설명되지 않았던 그래핀 양자점에서의 파란색 형광 빛의 원인을 밝혀냈다”고 이번 연구의 의의를 밝혔다.
KAIST 생명화학공학과 페이 리우(Fei Liu), 물리학과 장민호(제1저자) 박사과정 학생이 서태석, 조용훈 교수의 지도를 받아 수행한 이번 연구는 환경융합 신기술개발사업과 KAIST 나노융합연구소의 그래핀 연구센터 지원으로 수행됐다.
서태석 교수(왼쪽), 조용훈 교수(오른쪽)
대면적의 빛을 활용하고 대기 중의 환경에서 0.02초 이내에 연료전지 등 차세대 에너지 저장 및 발전에 광범위하게 적용되는 고엔트로피 촉매 및 단일원자 촉매의 합성을 세계 최초로 구현했다. 우리 대학 전기및전자공학부 최성율 교수 연구팀과 신소재공학과 김일두 교수 연구팀이 공동연구를 통해 강한 빛을 다양한 탄소 기반 소재에 조사해, 0.02초 이내에 나노입자 촉매와 단일원자(single atom) 촉매를 진공 시설이 없는 대기 조건에서 합성하고 우수한 촉매 성능을 구현하는데 성공했다고 6일 밝혔다. 연구팀은 2022년 4월 제논 램프 빛을 조사해 금속산화물의 상(phase) 변화와 표면에 촉매 입자가 생성될 수 있음을 최초로 밝혔고 그 후속으로 소재의 광열효과를 유도하는 합성법에 대한 연구를 진행했다. 이에 초고온(1,800~3,000oC)과 빠른 승/하온 속도(105 oC/초)를 통해 기존의 합성법으로는 구현할 수 없는 촉매 입자를 합성하는 데 성공했다. 이번 기술은
2023-12-06디스플레이 패널에 쓰이는 차세대 발광소재로 양자점(Quantum dot)이 각광을 받고 있다. 특히, 카드뮴이나 납과 같은 유독성 물질을 포함하지 않는 친환경 인듐 포스파이드(InP) 양자점이 주목을 받고 있으나 현재 기술로는 초고해상도 구현이 어려워 양자점 LED(QLED) 디스플레이 및 안경형 증강현실/가상현실 기기 적용에 있어 한계를 지닌다. 우리 대학 신소재공학과 조힘찬 교수 연구팀이 친환경 InP 양자점의 우수한 광학적 특성을 유지하며 초고해상도 패턴을 제작하는 신기술을 개발했다고 26일 밝혔다. 현재, 국제 유해물질 제한지침 (RoHS, Restriction of Hazardous Substances) 규정을 만족하지 못하는 제품은 많은 나라에서 판매가 금지되므로, 최근 많은 디스플레이 기업은 환경친화적인 특성을 갖춘 InP 양자점을 디스플레이에서의 빛 방출 소재로 채택하여 TV 등 중대형 디스플레이에 적용하기 시작하였다. 그러나 InP 양자점은 외부 환경에
2023-09-26위장관에 발병하는 만성적인 염증성 장 질환은 아직 뚜렷한 원인이 밝혀지지 않아 비스테로이드성 항염증제들과 주사용 항체 치료제들을 이용한 치료법이 일반적이지만 면역약화 등의 부작용들로 인해 치료에 어려움이 있다. 우리 대학 생명과학과 전상용 교수와 화학과 이희승 교수 공동연구팀이 장 내 당질층을 모사한 탄수화물 나노입자에 생체 내에서 항산화 및 항염증 작용을 하는 빌리루빈을 결합해 ‘항염증 탄수화물 나노입자(Anti-inflammatory Glycocalyx-mimicking nanoparticles)‘ 수십 종을 합성하고 이를 염증성 장 질환 치료에 적용함으로써 탁월한 효능을 보이는 의약을 개발했다고 2일 밝혔다. 세포막은 다양한 형태의 당 사슬 집합체인 당질층(glycocalyx)으로 둘러싸여 있다. 염증성 장 질환이 있는 사람의 장 조직에서는 정상인들과 다른 당질층이 형성되어 있다. 이러한 당질층은 우리 몸이나 음식에 많이 존재하는 탄수화물을 이루
2023-08-02최근 서구화된 식습관, 유전 및 여러 환경 요인에 의해 장에서 발생하는 만성 염증을 일으키는 염증성 장 질환 환자가 우리나라에서 지속적으로 늘어나는 추세이지만, 여전히 효과적인 치료제 개발이 미흡한 상황이다. 우리 대학 생명과학과 전상용, 조병관 교수 공동연구팀이 경구투여 시 염증성 장에서 과도하게 활성화된 대식세포를 표적 할 수 있는 키토산-빌리루빈 (Bilirubin) 나노입자를 개발했다고 21일 밝혔다. 빌리루빈은 헤모글로빈이 분해될 때 나오는 물질로 염증에서 발생하는 활성산소에 대해 강력한 환원력(scavenging effect)을 가지며, 이로 인해 항염증성 효과가 탁월해 약물 개발로의 시도가 지속되고 있다. 그러나 빌리루빈 자체의 소수성 특성(hydrophobicity)에 의해 임상 단계에서의 직접적인 활용이 어렵다. 연구팀은 빌리루빈을 체내, 특히 경구투여로 전달할 수 있도록 점막부착성과 수용성 성질을 동시에 지니는 저분자량 수용성 키토산(Low molec
2023-06-21우리 대학 물리학과 양용수 교수, 화학과 한상우 교수, 기계공학과 유승화 교수 공동연구팀이 한국기초과학지원연구원, 한국화학연구원과의 공동연구 및 미국 로런스 버클리 국립연구소(Lawrence Berkeley National Laboratory), 영국 버밍엄 대학교(University of Birmingham)와의 국제 협력 연구를 통해 팔라듐-백금 코어-쉘 구조 나노입자의 3차원 계면구조와 그 특성을 규명했다고 3일 밝혔다. 코어-쉘(core-shell) 구조 나노입자는 서로 다른 물질로 이루어진 코어(알맹이)와 쉘(껍데기)이 맞붙은 형태로 합성된 나노물질이다. 코어와 쉘 간의 경계면에서 코어를 이루는 물질과 쉘을 이루는 물질 간의 원자 간격 차이로 인해 원자 구조의 변형이 일어나며, 이 변형을 제어함으로써 나노입자의 광학적, 자기적, 촉매적 성질들을 변화시킬 수 있다. 특히 수소연료전지 제작에 필수적으로 사용되는 촉매에 값비싼 백금이 주로 사용되는데, 코어-쉘 구조를
2022-11-03