우리대학은 파도치는 해상에서 대형 선박 간 자동도킹이 이루어지는 모바일하버 신기술을 4월 26일 오후 2시 부산 한국해양대학교 앞 해상에서 선보였다.
모바일하버 원천기술의 하나로 개발된 자동도킹시스템은 파도치는 바다에서 선박 간 충돌을 방지하면서 두 선박을 신속하고 안정적으로 연결하는 기술이다. 세계적으로 그 필요성이 대두되어 왔지만 기술적 한계로 상용화가 이루어지지 않았다.
이날 공개시연에서는 모바일하버 역할을 하는 바지선을 컨테이너선에 해당하는 선박에 근접시키고, 자동으로 도킹을 한 후, 상호계류를 유지시키는 정상작동 상황과 비상상황 발생 시의 대처 과정 등의 시연이 성공적으로 펼쳐졌다.
‘움직이는 항구’로 불리는 모바일하버를 상용화하기 위해서는 선박 간 자동도킹 기술이 필수적이다. 수심이 낮아 항만에 접안할 수 없는 대형 컨테이너선의 하역작업을 위해서는 해상에 떠있는 컨테이너선에 모바일하버가 다가가 측면에 밀착해야 되기 때문이다.
파도와 바람의 영향으로 끊임없이 움직이는 두 부유체를 안전하고 신속하게 측면으로 밀착해 일정 거리를 유지하는 것은 매우 어려운 기술이다. 기존에는 선원들이 로프를 주고받아 계류해 시간이 매우 오래 걸리고 사고의 우려는 물론 응급상황에 신속하게 대처할 수 없었다.
KAIST 모바일하버 연구팀은 로봇기술을 기반으로 파도가 치는 해상 특성을 극복하는 자동도킹 기술을 조선·해양 기자재 전문기업인 미래산업기계(대표 강종수)와 해양설비 설계 전문회사 오션스페이스(대표 정현)와 공동으로 개발했다. 모바일하버는 두 선박이 파도와 바람의 영향에도 불구하고 안전하게 하역작업을 할 수 있는 새로운 기술로 로봇팔, 진공 흡착패드, 윈치, 펜더로 구성된 융․복합 시스템이다.
모바일하버는 해상에서 컨테이너선과 연결 후 고속으로 정밀하게 컨테이너를 상‧하역해 부두로 이송하는 신개념 해상운송수단으로, KAIST가 지난 2009년부터 미래성장동력사업으로 추진하고 있다.
해양산업에서 대형 선박 간 계류 및 해상에서 상․하역 문제의 해결 필요성은 꾸준히 대두되었으나 기술적 어려움으로 인해 시도되지 못했던 어려운 숙제를 모바일하버 개발로 해결한 셈이다.
우리 학교는 오는 6월 29일, 컨테이너를 해상에서 정밀하고 안전하게 상․하역하는 안정화 크레인 기술과 자동도킹시스템 기술을 종합한 모바일하버 통합 공개시연 행사를 가질 계획이다. 이 시연에는 국내외 전문가들뿐만 아니라 모바일하버 기술에 관심이 많은 미국 ONR(미해군성 연구개발국) 연구책임자들과 사업화에 관심을 표명한 해외 인사들이 대거 참관할 예정이다.
우리 대학은 지난 2009년 말 해양수조 시연을 통해 모바일하버 원천기술 가능성을 검증한 이후, 실제 해상에서 시연을 성공적으로 수행함에 따라 개발된 기술의 상용화와 사업화에 탄력이 붙을 것으로 기대된다.
곽병만 모바일하버사업단장은 “모바일하버는 항만을 신설하거나 증설하지 않고 컨테이너를 수송할 수 있는 새로운 해상물류수단으로 경제적 가치를 창출할 뿐만 아니라 저탄소 녹색성장에도 기여할 것”이라며 “모바일하버에 녹아있는 다양한 기술은 조선해양산업 뿐만 아니라 다른 산업에도 응용되고 파급될 수 있을 것”이라고 말했다.
망막의 세포 수준 해상도 이미징 기술은 질병의 조기진단과 망막질환에 대한 이해를 높이기 위해 필수적이다. 하지만, 복잡한 고가의 광학 시스템을 사용하고도 망막의 매우 좁은 영역과 단일 초점면에서 세포 수준 고해상도 이미징이 가능했던 기술을 뛰어넘어 간단한 표준적 광학 시스템을 사용하면서도 2.3초 이내에 한 번의 이미징으로 넓은 망막 영역의 3차원 모든 부분에서 세포 수준 고해상도 이미징을 제공하여 망막질환 임상 및 연구에 새로운 전기를 가져올 기술이 개발되어 화제다. 우리 대학 기계공학과/KI헬스사이언스연구소 오왕열 교수 연구팀이 세계 최초로 사람 망막의 넓은 영역에서 초점 위치뿐만이 아니라 초점에서 벗어난 위치에서도 세포 수준 고해상도 이미징이 가능한 기술을 개발했다고 3일 밝혔다. KI헬스사이언스연구소 이병권 박사가 제1 저자로 참여한 이번 연구 결과는 융합연구분야 선도 저널인 스몰(Small, JIF 15.153) 3월호에 게재됐다. (논문명: Wide-Field
2023-05-03엑스선 현미경은 대부분 물질을 투과하는 장점이 있어 흉부 엑스선이나 CT 촬영을 통해 신체 내부 장기와 골격을 비침습적으로 관찰할 수 있다. 최근에는 반도체, 배터리의 내부 구조를 나노스케일에서 정밀하게 관찰하기 위해 엑스선 영상 기술의 해상도를 높이려는 연구들이 활발하게 진행되고 있다. 우리 대학 물리학과 박용근 교수 연구팀이 포항가속기연구소 임준 박사 연구팀과 공동연구를 통해 기존 엑스선 현미경의 해상도 한계를 극복할 수 있는 원천 기술 개발에 성공했다고 12일(수) 밝혔다. 물리학과 이겨레 박사가 제1 저자로 참여한 이번 연구는 광학 및 광자학의 세계적인 학술지인 `라이트: 사이언스 앤 어플리케이션 (Light: Science and Application)' 4월 7일 字에 출판됐다. (논문명: Direct high-resolution X-ray imaging exploiting pseudorandomness). 엑스선 나노 현미경은 굴절 렌즈가 없어 렌즈 대용으로
2023-04-12디지털화된 현대인 생활 속에는 웨어러블, 롤러블 디스플레이 등 다양한 형태의 미래 디스플레이가 요구되는데 특히 증강현실 및 가상현실을 위한 스마트 글라스 등 디바이스의 경우에 완벽하게 유저들을 몰입시키는데 요구되는 4K 이상의 해상도가 필요하다. 하지만 디바이스에 요구되는 작은 소비전력 및 제한된 면적에 많은 픽셀을 구현해야 하는 기술적 한계에 봉착하여 완벽하게 구현되지 못하고 있는 실정이다. 우리 대학 전기및전자공학부 김상현 교수 연구팀이 소자의 크기가 마이크로미터(μm, 백만분의 1미터) 정도의 크기를 갖는 마이크로 LED의 소형화될 때 소자 효율이 저하되는 현상을 재규명하고 이를 에피택시 구조 변경으로 근본적인 해결이 가능함을 제시했다고 22일 밝혔다. 에피택시 기술이란 마이크로 LED로 사용되고 있는 초순수 규소 (Silicon) 혹은 사파이어 (Sapphire) 기판을 매개체로 삼아 그 위에 발광체로 쓰이는 질화갈륨 결정체를 쌓아 올리는 공정을 말한다.
2023-03-22초고해상도 디스플레이는 가상 현실(VR), 증강 현실(AR), 스마트 워치 등의 차세대 전자제품 개발에 필수적인 요소로, 헤드 마운트 디스플레이 방식 뿐 아니라 스마트 글라스, 스마트 렌즈 등에도 적용이 가능하다. 이번 연구를 통해 개발된 기술은 이러한 차세대 초고해상도 디스플레이나 다양한 초소형 광전자 소자를 만드는 데 활용될 수 있을 것으로 기대된다. 우리 대학 물리학과 조용훈 교수 연구팀이 집속 이온 빔을 이용하여 평균 머리카락 굵기(약 100 마이크론)의 100분의 1보다도 작은 0.5 마이크론 스케일의 픽셀을 구현할 수 있는 초고해상도 발광 다이오드 (LED) 디스플레이 핵심 기술을 개발했다고 22일 밝혔다. 현재 초고해상도 LED 디스플레이의 픽셀화는 보통 픽셀 주변의 영역을 물리적으로 깎아내는 식각 방법을 사용하는데, 주변에 여러 결함이 발생하여 픽셀이 작아질수록 누설전류가 증가하고 발광 효율이 떨어지는 부작용이 있다. 또한 픽셀화를 위한 패터닝 및 누설전류를
2023-02-22우리 대학 전기및전자공학부 김상현 교수 연구팀이 *모놀리식 3차원 집적의 장점을 활용한 1,600PPI*에 상응하는 마이크로LED 디스플레이를 구현하는 데 성공했다고 29일 밝혔다. 1,600 PPI는 초고해상도 증강현실(AR)/가상현실(VR) 디스플레이에 적용 가능한 해상도로써 2020년 출시된 오큘러스(Oculus) 社(現 메타(Meta))의 메타 퀘스트 2(Meta quest 2, 442 PPI)의 3.6배에 해당하는 디스플레이 해상도다. ☞ 모놀리식 3차원 집적: 하부 소자 공정 후, 상부의 박막층을 형성하고 상부 소자 공정을 순차적으로 진행함으로써 상하부 소자 간의 정렬도를 극대화할 수 있는 기술로 궁극적 3차원 집적 기술로 불린다. ☞ PPI: Pixel per Inch. 디스플레이에서 1인치에 포함되는 픽셀의 갯수 전기및전자공학부 박주혁 박사과정과 금대명 박사가 제1 저자로 주도하고 백우진 박사과정과 대만의 제스퍼 디스플레이(Jasper Display)의 존슨
2022-07-29