본문 바로가기 대메뉴 바로가기

연구

촉각 증강을 위한 고탄성 압전 세라믹 신소재 개발​
조회수 : 37786 등록일 : 2020-12-02 작성자 : 홍보실

사진 1. (왼쪽부터) 신소재공학과 한승민 교수, 윤석중 박사과정, 김훈 박사과정, 김기선 박사, 홍승범 교수

< 사진 1. (왼쪽부터) 신소재공학과 한승민 교수, 윤석중 박사과정, 김훈 박사과정, 김기선 박사, 홍승범 교수 >

언택트(비대면) 시대를 맞아 가상현실(VR)과 증강현실(AR) 기술을 통한 소통의 필요성이 증가함에 따라 인간의 오감(五感, five senses)을 전자기기를 통해 구현 및 측정하는 기술의 연구 역시 가속화되고 있다.

우리 대학 신소재공학과 홍승범 교수 연구팀이 촉감이나 촉각 증강기술에 활용이 가능하도록 3D 나노 구조체를 활용해 탄성 변형률이 3배로 향상된 압전 세라믹 소재를 개발했다고 2일 밝혔다.

전자기기와 상호작용하는 기술에 관한 사람들의 관심이 꾸준히 높아지는 추세를 감안한다면 특히 인간의 일반적인 자극인지 방식을 고려할 때, 사용자에게 2개 이상의 복합 감각이 제공되면 전자기기와 더욱 자연스럽게 상호작용을 할 수 있다. 따라서 최근 들어 시각 및 청각보다 상대적으로 발전이 더딘 촉감 구현 및 증강 기술이 주목을 받고 있다.

촉각 증강 기술은 의료용 로봇을 주축으로 한 로봇 기술뿐만 아니라 촉각을 통해 정보를 전달하는 햅틱 디스플레이, 햅틱 장갑 등 정보 전달 기술에 활용할 수 있다. 이러한 촉각 증강 분야에서는 전기적-기계적 결합이 있는 압전 재료의 활용이 필수적이다.

압전 재료는 전기적 에너지를 기계적 에너지로 변환하거나 기계적 에너지를 전기적 에너지로 변환할 수 있는 소재로서 촉각 증강 분야에서 사용자에게 촉각을 전달하거나 사용자의 움직임을 전기적 신호로 변형시키는데 적합한 소재다.

촉각 증강 소재로 활용하기 위한 압전 재료의 중요한 특징은 압전 계수와 탄성 변형률이다. 압전 계수는 기계적 힘과 전기적 전하량 간의 변환 효율을 나타내는 수치로써 촉각 증강 장치의 감도에 영향을 준다. 또 탄성 변형률은 소재가 가질 수 있는 기계적 변형 한계를 나타내는 수치인데 소재 및 장치가 가지는 유연성에 영향을 준다. 따라서 촉각 증강 기술로 활용하기 위해서는 압전 계수와 탄성 변형률 모두가 높은 압전 소재를 개발하는 것이 필수적이다.

하지만 압전 세라믹 소재의 경우 압전 계수는 높으나 탄성 변형률이 낮고, 고분자 소재는 탄성 변형률은 높으나 압전 계수가 낮아 하나의 소재에서 높은 압전 계수와 탄성 변형률을 모두 얻기는 힘들다. 특히 세라믹 소재는 상대적으로 높은 압전 계수에도 불구하고 소재 내부의 결함으로 인해 탄성 변형률을 높이기가 어려워 아직 실용화 단계까지는 이르지 못하고 있다.

홍 교수 연구팀은 문제해결을 위해 근접장 나노 패터닝(Proximity field nanopatterning, PnP) 기술 및 원자층 증착(Atomic layer deposition, ALD) 기술을 이용해 3차원 나노 트러스(truss) 구조를 갖는 산화물 아연 (ZnO) 세라믹을 제작했다. 또 나노 인덴테이션 (Nano-indentation) 기술과 압전 감응 힘 현미경(Piezoelectric force microscopy, PFM) 기술을 이용, 제작된 구조체의 높은 기계적 특성과 압전 특성을 입증하는데 성공했다.

홍 교수팀이 개발한 압전 아연 산화물 구조체는 100 나노미터(nm) 이하의 두께를 가지면서 내부가 비어있는 트러스 구조체다. 기존 세라믹이 보유하고 있는 내부 결함의 크기를 나노미터 단위로 제한해 재료의 기계적 강도를 증가시켰다. 이 아연 산화물 트러스 구조체의 탄성 변형률은 10% 수준으로 기존 아연 산화물 대비 3배나 더 큰 것으로 나타났으며 압전 계수 역시 9.2 pm/V로 박막 형태의 아연 산화물보다 2배 이상 더 큰 값을 나타냈다.

특히 홍 교수팀이 개발한 이 구조체의 탄성 변형률 증가는 아연 산화물 외에도 다양한 압전 세라믹 소재에 적용할 수 있기에 향후 촉각 증강 기술에서 매우 중요한 유연한 센서와 액추에이터에 압전 세라믹을 활용할 수 있는 새로운 방법으로 사용할 수 있을 것으로 기대된다.

홍승범 교수는 "언택트 시대의 도래로 감성 소통의 중요성이 증가하고 있는데 시각, 청각에 이어 촉각 구현 기술의 발전을 통해 인류는 장소와 관계없이 누구와도 소통할 수 있는 새로운 세상을 맞이할 것ˮ이라고 전망했다. 홍 교수는 이어 "이번 연구 결과를 촉각 증강 소자에 바로 적용하기에는 공정적인 측면에서 다소 보강작업이 필요하지만, 소재 활용에 큰 문제가 됐던 기계적 한계를 극복해 압전 세라믹 소자로의 응용 가능성을 연 것ˮ이라고 이번 연구에 대한 의미를 부여했다.

그림 1. 3차원 아연 산화물 나노 트러스 구조체의 제조 방법 및 구조의 측면 이미지

< 그림 1. 3차원 아연 산화물 나노 트러스 구조체의 제조 방법 및 구조의 측면 이미지 >

그림 2. 제조 온도에 따른 3차원 아연 산화물 트러스 구조체의 기계적 탄성 변형률과 탄성계수 및 압전 계수

< 그림 2. 제조 온도에 따른 3차원 아연 산화물 트러스 구조체의 기계적 탄성 변형률과 탄성계수 및 압전 계수 >

우리 대학 신소재공학과 김훈 박사과정, 윤석중 박사과정, 김기선 박사가 공동 제1 저자로 참여한 이번 연구는 신소재공학과 전석우 교수와 한승민 교수 연구팀과 함께 진행됐으며 연구 결과는 국제 학술지 `나노 에너지(Nano Energy)' 게재됐다. (논문명: Breaking the Elastic Limit of Piezoelectric Ceramics using Nanostructures: A Case Study using ZnO)

한편 이번 연구는 과학기술정보통신부·한국연구재단 지원 웨어러블 플랫폼 소재 기술센터 지원과 미래소재 디스커버리 지원, 그리고 기초연구 지원 및 KAIST 글로벌특이점 연구 지원으로 수행됐다.

관련뉴스