- ACS Nano誌 온라인판 19일자에 게재 -
나노기술의 오랜 난제가 KAIST와 삼성전자 LCD사업부에 의해 풀렸다.
우리학교 신소재공학과 김상욱 교수팀과 삼성전자 LCD사업부(사장 장원기)가 산학공동연구를 통해 분자자기조립현상(Molecular Self-assembly)과 디스플레이용 광리소그래피(Optical Lithography) 공정을 융합해 나노기술의 오랜 난제로 여겨지던 ‘저비용 대면적 나노패턴기술’ 개발에 성공했다.
최근 나노기술 분야에서는 서로 다른 종류의 고분자를 화학적으로 결합시킨 블록공중합체가 새로운 나노패턴소재로 각광받고 있다.
분자조립 과정을 통해 스스로 형성하는 초미세 나노구조를 블록공중합체에 이용하게 되면 최신 반도체공정으로도 만들기 힘든 수~수십 나노미터 크기의 미세한 점이나 선 등을 쉽고 값싸게 제조할 수 있다.
그러나 자연적으로 형성되는 블록공중합체 나노패턴은 그 배열이 불규칙하고 결함이 많아 상용화를 위한 기술적인 걸림돌로 지적되어 왔다.
블록공중합체 나노패턴을 반도체나 디스플레이에 이용하기 위해서는 임의의 대면적에서 블록공중합체 나노패턴을 원하는 형태로 잘 정렬시킬 수 있는 기술이 필수적이다.
그러나 현재까지 개발된 기술들은 방사광가속기와 같은 매우 값비싼 장비가 필요하고 임의의 넓은 면적에 적용할 수 없다는 근본적인 한계를 가지고 있었다.
[그림.1] 자연적으로 형성된 무질서한 배열의 블록공중합체 나노패턴 (왼쪽)과 대면적 나노패턴공정으로 결함 없이 잘 배열된 블록공중합체 나노패턴 (오른쪽)
김 교수팀은 이번에 개발된 융합 기술을 통해 저비용 패턴공정인 디스플레이용 광리소그라피로 대면적에서 마이크로미터(1㎛=100만분의 1m) 크기의 패턴을 만든 후, 분자조립현상을 이용해 수십 나노미터(1㎚=10억분의 1m) 크기의 패턴으로 밀도를 백 배이상 증폭시킴으로써 대면적에서 잘 정렬된 나노패턴을 형성시키는데 성공했다.
[그림.2] 대면적에서 마이크로 크기의 패턴이 수십나노미터 크기의 패턴으로 패턴의 밀도를 증폭시키는 과정(위쪽)과 이를 통해 대면적에서 형성된 20 나노미터 선폭의 초미세 분자조립 나노구조(아래쪽)
이는 기존 나노패턴기술에 비해 더 단순하고 공정비용이 저렴하며, 넓은 면적에서 연속 공정이 가능해 차세대 반도체나 디스플레이 분야에 폭넓게 이용될 수 있을 것으로 기대된다.
연구책임자인 김상욱 교수는 “이번 연구결과는 분자조립 나노패턴기술을 저비용, 대면적화 함으로써 실제 나노소자공정에 이용할 수 있는 가능성을 크게 높였다는데 의미가 있다”고 말했다.
이 연구는 김 교수의 지도하에 정성준 박사가 주도적으로 진행했으며 현재 정 박사는 KAIST에서 박사과정을 마친 후, U.C. Berkely에서 박사후연구원(Post doc)으로 근무하고 있다.
한편, 이번 연구결과는 KAIST 김상욱 교수팀과 삼성전자 LCD사업부의 3년간에 걸친 공동연구의 결실로서 그간 선행연구결과들이 Nano Letters, Advanced Materials, Advanced Functional Materials지 등 저명 학술지에 발표된 바 있으며, 최종적으로 개발된 ‘저비용, 대면적 나노패턴기술’은 최근 나노기술분야의 세계적인 학술지인 ‘ACS Nano誌’ 8월 19일자 온라인 판에 소개됐다.
고에너지 밀도를 갖는 리튬이차전지 개발에 대한 수요가 폭발적으로 증가하면서, 실리콘 기반 음극 개발에 관한 연구가 활발히 이뤄지고 있다. 실리콘 활물질은 기존 음극 활물질인 흑연 대비 높은 용량 값(4200 mAh/g)을 가지고 있어, 고에너지 밀도를 가지는 리튬이차전지용 음극의 유력한 후보로 자리 잡고 있다. 하지만 충전 및 방전 간 400%에 달하는 높은 부피 팽창/수축률이 실리콘 활물질의 상업화를 방해하고 있다. 실리콘 기반 음극의 급격한 부피 변화는 특히 전극 내 전자 전달 시스템에 큰 악영향을 미치고 있으며, 이를 보완하기 위해 다양한 도전재 시스템을 적용하는 연구가 활발히 진행 중이다. 전극 내 전자 전도 채널의 확보는, 활물질 내 균등한 전기화학 반응을 유발하기 위해 필수적이지만, 이를 나노스케일 공간 분해능을 갖고 영상화하는 방법론에 관해서는 많은 연구가 진행되지 않은 실정이다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 LG에너지솔루션과 협업해, 나노스케
2022-11-08우리 대학 기계공학과 이강택 교수 연구팀이 마이크로파를 이용한 초고속 소결 공정을 통해 고성능 프로토닉 세라믹 연료전지(PCFC) 개발에 성공했다고 3일 밝혔다. 기존의 산소 이온 전도성 고체 산화물 연료전지(SOFC)와 달리, 프로토닉 세라믹 연료전지는 양성자 전도성 세라믹 전해질의 높은 이온 전도도와 낮은 활성화 에너지 특성으로 인해, 600oC 이하 저온에서 고효율로 전력 변환 및 수소 생산이 가역적으로 가능한 에너지 변환 시스템으로 이는 수소전기차, 수소 충전소, 건물 및 선박용 발전시스템 등에 활용이 가능한 탄소중립 사회를 위한 차세대 핵심 기술로 떠오르고 있다. 이러한 프로토닉 세라믹 연료전지는 난소결성 바륨 기반 산화물 전해질을 사용하는데, 이를 치밀화하기 위해서 1,500oC 이상 고온에서 장시간 소결(세라믹 입자를 가열하여 단단하게 결합시키는) 공정이 필수적이다. 하지만, 이러한 극한 공정 중에 산화물 내부에서 발생하는 양이온 확산으로 화학적 조성이 불안정
2022-08-03우리 대학 전기및전자공학부 윤준보 교수와 부산대학교 의생명융합공학부 서민호 조교수(KAIST 박사 졸업) 연구팀이 넓은 범위의 수소가스 농도를 무선으로 검출하는 고 민감도 센서 기술을 개발했다고 28일 밝혔다. (제1 저자: KAIST 조민승 박사과정) 연구팀은 팔라듐 금속을 3차원 나노구조로 설계함으로써 나타날 수 있는 `팔라듐 상전이(phase-transition)* 억제 효과'를 통해 0~4% 농도의 수소가스를 높은 선형성으로 감지하는 무선 가스 센서 기술을 개발했다. *상전이(phase transition): 화학, 열역학 및 기타 관련 분야에서 일반적으로 물질의 기본 상태(결정성, 고체, 액체, 기체) 사이의 변화를 뜻한다. 우리 대학 전기및전자공학부 조민승 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ACS 나노(ACS nano) 온라인판에 지난달 27일 게재됐으며, 그 우수성을 인정받아 추가 표지 논문으로 선정됐다. (논문명: Wireless
2022-06-28우리 대학 생명화학공학과 이도창 교수, 이상엽 특훈교수, 박영신 연구교수 연구팀이 디스플레이 소재인 양자점(퀀텀닷)을 이용해 *질소 고정 박테리아의 암모니아 생산 효율을 대폭 늘렸다고 16일 밝혔다. ☞ 질소 고정(Nitrogen Fixation) : 공기 중 질소 기체 분자(N₂)를 암모니아(NH₃)를 비롯한 질소화합물로 전환하는 과정을 말한다. 이 교수 연구팀은 양자점에 의해 흡수된 빛 에너지가 박테리아의 암모니아 합성 반응에 사용되도록 설계했으며, 그 결과 박테리아의 암모니아 생산량을 큰 폭으로 증가시킬 수 있었다. 이를 위해 연구팀은 양자점을 질소고정 박테리아 안에 더 많이 넣을 수 있는 방법을 제시했다. 생명화학공학과 고성준 박사가 제1저자로 참여한 이번 연구의 결과는 국제 학술지 `미국 화학회지(JACS)'에 표지 논문으로 선정돼 출판됐다. (논문명 : Light-Driven Ammonia Production by Azotobacter vinelandii Cu
2022-06-16리튬이온전지는 스마트폰과 전기차 그리고 드론을 비롯한 각종 이동 수단에 필수적인 에너지 저장 매체로 사용되고 있다. 기후변화와 코로나 팬데믹이 키워드가 되는 시대가 도래하면서 급증하는 수요에 대응하기 위해 리튬이온전지의 에너지 용량, 충전 속도 등의 전기화학적 특성을 향상하려는 연구들이 이뤄지고 있지만, 기존의 전기화학 특성 평가 방법으로는 나노미터 수준의 미시세계에서 벌어지고 있는 현상들을 이해하기 어렵다. 따라서, 전기화학 특성에 대한 통합적인 이해를 위해 나노스케일 수준에서 리튬이온의 농도 및 전기전도도 분석 기술의 개발은 필수적이다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 독일의 아헨공과대학교 플로리안 하우센(Florian Hausen) 교수와 독일 뮌스터 대학교 카린 클라이너(Karin Kleiner) 교수와 협업하여 고용량 리튬이온배터리를 충‧방전할 때 리튬이온이 움직이는 모습과 그로 인해서 전자들이 움직이는 전도 경로 그리고 격자들의 움직임을 원자간력 현미경
2022-04-29