본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%9D%B4%EC%83%81%EC%97%BD
최신순
조회순
박사과정 4명, 학술지에 초청 논문 게재
〈 이상엽 교수 연구팀 〉 우리 대학 생명화학공학과 네 명의 박사과정 학생들(지도 : 이상엽 특훈교수)이 시스템대사공학(Systems metabolic engineering) 전략을 주제로 초청 리뷰논문을 게재했다. 이상엽 교수의 지도 아래 최경록, 신재호, 조재성, 양동수 네 명의 학생이 주도한 이번 논문은 미생물 분야 학술지 ‘에코살 플러스(EcoSal Plus)’ 10일자 온라인 판에 게재됐다. 이번 논문은 학술 및 산업적으로 널리 연구되고 활용되는 대장균의 시스템대사공학 연구 전략을 총망라했다. 시스템대사공학은 이상엽 특훈교수가 창시한 과학기술 분야로 기존 대사공학에 시스템생물학, 합성생물학, 진화공학 등을 융합한 학문이다. 이번 리뷰 논문에서는 ▲시스템대사공학에서 활용하는 다양한 실험 기법 ▲시스템대사공학 연구 전략 ▲시스템대사공학 전략을 적용해 대량생산 및 산업화에 성공한 바이오리파이너리 사례를 다룬다. 대사공학은 미생물의 대사 흐름을 조절해 화합물을 생산할 수 있는 세포 공장 구축을 목표로 한다. 바이오매스 등 재생 가능한 탄소원을 먹이로 삼아 미생물을 배양해, 다양한 산업 및 의약 물질을 생산하는 바이오리파이너리 분야의 핵심 요소로 평가받는다. 특히 기존 대사공학에 시스템대사공학 전략을 적용하면 물질을 대량생산할 수 있는 고성능 균주를 효과적으로 구축할 수 있어 비용 절감을 기대할 수 있다. 또한 균주가 대규모 바이오리파이너리 공정에 적합하도록 지속적으로 최적화하는 과정도 포함돼 미래에는 석유화학 산업을 대체할 수 있을 것으로 기대된다. 에코살 플러스는 두 번에 걸쳐 출판된 ‘대장균과 살모넬라(Escherichia coli and Salmonella: Cellular and Molecular Biology)’ 책자를 전신으로 하는 온라인 리뷰 학술지이다. 생물학 연구에서 중요한 대장균 등의 미생물에 관련한 유전, 생화한, 대사 등 모든 분야를 다뤄 생물학 전반 연구의 주요 지침서로 알려져 있다. 이 교수는 “이번 초청 리뷰는 최경록, 신재호, 조재성, 양동수 네 명의 박사과정 학생들이 세계적 수준의 전략 제시 능력을 갖췄음을 증명한 것이다”며 “생명공학분의 바이블로 불리는 에코살 플러스에 논문을 게재한 학생들이 매우 자랑스럽다”고 말했다.
2016.03.30
조회수 8073
이상엽 교수, 미생물로부터 친환경 바이오플라스틱 생산기술 개발
〈 이 상 엽 교수 〉 우리 대학 생명화학공학과 이상엽 교수 연구팀이 세계 최초로 미생물을 이용해 대표적 의료용 고분자인 폴리락테이트-co-글라이클레이트(poly(lactate-co-glycolate), PLGA)를 생산해냈다고 밝혔다. 이번 연구는 생명공학 분야의 최고 권위지인 '네이처 바이오테크놀로지(Nature Bio-technology) 온라인 판에 8일 게재되었다. 기존 폴리락테이트-co-글라이콜레이트의 화학적 생산 공정은 여러 단계의 화학적 전환, 정제 등 복잡한 공정이 필요해 비효율적이었을 뿐만 아니라 유독성 금속 촉매가 사용되어 친환경적이지 못한 단점을 가지고 있었다. 폐목재, 볏짚 등 재생가능한 자원인 바이오매스를 기반으로 폴리락테이트-co-글라이콜레이트를 생산하는 미생물(균주)을 개발하여, 기존 화학공정 대비 친환경적이면서 단순화된 공정이 가능해졌다. 또한 이번 연구에서 개발한 폴리락테이트-co-글라이콜레이트 생산 균주를 기반으로 한 응용 기술로 다양한 목적성 고분자* 생산이 가능해져 신규 바이오플라스틱 생산에 새로운 지평을 열었다. 이번 연구 결과는 자원고갈, 기후변화 등의 문제를 안고 있는 기존 석유 의존형 화학산업을 재생가능한 자원을 통해 지속성장이 가능한 바이오 의존형 화학산업으로 바꾸기 위한 바이오 리파이너리 분야의 의미있는 성과이다. 이상엽 교수는 “이번 연구는 의료용 고분자의 대표적 물질인 폴리락테이트-co-글라이콜레이트를 만드는 미생물을 개발한 세계 최초의 연구“라며 “인공고분자를 생물학적 방법으로 생산할 수 있는 시스템을 구축했다는 점에서 큰 의미를 가진다.”고 말했다. □ 그림 설명 그림1. 대사공학적으로 개량된 대장균이 바이오매스로부터 PLGA 및 다양한 PLGA 공중합체를 생산하는 전체 개념도
2016.03.08
조회수 7255
아·태 바이오텍뉴스誌, 한국의 생명공학 특집호 발간
〈 이 상 엽 교수 〉 우리 대학 생명화학공학과 이상엽 특훈교수가 편집을 맡은 ‘아시아태평양 바이오텍뉴스(Asia Pacific Biotech News)지 - 한국의 생명공학(Biotechnology in Korea) 특집호’가 발간됐다. ‘아시아태평양 바이오텍뉴스’ 지는 싱가포르 월드사이언티픽(World Scientific)사가 발간하는 잡지로, 이번 특집호에는 미래창조과학부에서 추진 중인 글로벌프론티어 사업과 기후변화대응기술 개발 사업 등 바이오관련 사업 5가지가 소개됐다. 특집호는 ▲미래창조과학부 원천기술과의 글로벌프론티어 사업 중 미세조류를 이용한 바이오연료와 바이오제품 연구를 수행하는 차세대바이오매스사업단(KAIST 장용근 단장), ▲융합적 연구전략으로 신약 타겟과 개발을 주도하는 의약바이오 컨버전스사업단(서울대 김성훈 단장), ▲ICT와 나노기술을 바이오에 융합해 유해균, 바이러스, 유해물질 등의 신속 정확한 진단 기술을 개발하는 바이오나노 헬스카드사업단(한국생명과학연구원 정봉현 단장)의 연구성과와 전략들이 소개됐다. 또한 ▲미래창조과학부 생명기술과에서 추진 중인 바이오시너지사업단(KAIST 이도헌 단장)이 소개됐다. 이는 수많은 천연물과 인체 내 생물분자들과의 시스템생물학적 상호작용을 분석해 다중표적, 다중물질 기반의 새 치료제를 개발하는 사업단이다. 동의보감 등 선조들의 지혜가 담긴 다중성분 약제를 체계적으로 분석해 현대 의학에서의 의미를 분석 및 부여한다. 마지막으로 ▲기후변화대응 기술 개발 사업 중 바이오리파이너리를 위한 시스템대사공학 연구단(이상엽 단장)이 소개됐다. 시스템대사공학은 화석연료 대신 지속가능한 바이오매스를 이용해 바이오에탄올 등의 화학물질을 만드는 바이오리파이너리 기술의 핵심이다. 연구단은 엔지니어링 플라스틱 원료나 가솔린 등을 생산하는 미생물, 부탄올 및 숙신산을 세계 최고효율로 생산하는 미생물 등을 개발했다. 미래창조과학부 백일섭 원천기술과장은 “새해를 맞이해 아시아태평양 바이오텍뉴스지에서 한국의 생명공학 특집호를 발간한 것은 우리 생명공학기술을 높이 평가하고 있다는 의미를 갖는다”고 말했다. 이상엽 특훈교수는 “지난 2002년, 2006년, 2011년에도 동일 저널에 한국의 바이오텍 특집호를 발간한 바 있다”며 “우리의 건강을 지켜주고 환경문제에 대응하는 생명과학기술을 소개하는 특집호에 한국의 기술들이 소개돼 기쁘다”고 말했다. □ 그림 설명 그림1. 아시아태평양 바이오텍뉴스(Asia Pacific Biotech News)지 - 한국의 생명공학 특집호 표지
2016.02.02
조회수 6205
생명공학 연구팀, 다보스포럼서 아이디어스랩 세션 운영
우리대학의 첨단 생명공학 기술이 다보스포럼에 참가하는 전 세계 지도자들에게 소개된다. KAIST는 오는 20~23일 스위스 다보스에서 열리는 세계경제포럼 연차총회(일명 다보스포럼)에서 아이디어스랩(IdeasLab) 세션을 단독 운영한다. ‘고령화에 대응하는 첨단 생명공학 기술’을 주제로 열리는 이번 발표회에는 이상엽 생명화학공학과 특훈교수를 비롯해 4명의 KAIST 교수가 참여해 발표와 토론을 진행한다. 먼저 이상엽 특훈교수가 ‘전통의학 처방의 현대 시스템 생물학적 재 해석과 응용’을 주제로 한 발표에서 전통 한약의 다중성분이 상승효과를 통해 다중표적에 약효를 발휘한다는 점을 소개하고 고령화 시대의 건강 유지 및 향후 의약품, 화장품, 영양 등에 획기적인 발전이 있을 것임을 설명할 예정이다. 이어 △ 조병관 생명과학과 교수의 ‘장내 미생물을 활용한 자연적 신체회복’ △ 임윤경 산업디자인학과 교수의 ‘ICT 기반의 모바일 헬스케어 시스템 (일명 닥터 M)’ △ 김대수 생명과학과 교수의 ‘더 적은 것을 가지고도 행복을 느끼게 만드는 신경세포 스위치’의 연구결과가 발표된다. 강성모 총장은 “전 세계 리더 2500여명이 참석하는 이번 다보스포럼에서 KAIST라는 대학이 단독 세션을 운영하는 것은 이례적”며 “KAIST의 생명공학 기술을 전 세계에 알릴 수 있는 기회로 적극 활용 하겠다”라고 말했다. 하계 다보스포럼에서 아이디어스랩을 지속적으로 운영해 온 이상엽 특훈교수는 “KAIST는 하계 다보스포럼에서 아이디어스랩을 성공적으로 운영해 왔다”며 “다보스포럼 본 무대에서 처음 열리는 이번 세션은 KAIST의 첨단 생명공학 기술을 세계에 알리는 소중한 기회가 될 것”이라고 밝혔다. 다보스포럼은 클라우스 슈밥 회장이 1971년 창립한 행사로 매년 1월 스위스 다보스에 세계 지도자들이 모여 의견을 교환하는 장으로 활용된다. ‘제4차 산업혁명’을 주제로 열리는 올해 행사에는 전 세계 정치 지도자 ․ 대기업 CEO ․ 국제기구 수장 등 2500여명이 참석할 예정이다. 끝.
2016.01.19
조회수 6837
KAIST-한화케미칼, 화학 원천기술 개발 나선다
KAIST와 한화케미칼이 혁신적인 미래 화학 원천기술 확보를 위해 손을 잡았다. KAIST와 한화케미칼은 2일 KAIST 본관 제1회의실에서 강성모 총장, 김창범 사장 등 양 기관 관계자 10여 명이 참석한 가운데 ‘KAIST-한화케미칼 미래기술연구소’설립을 위한 협약을 체결했다. ‘미래연구소’는 내년부터 5년 간 ▲ 차세대 석유화학 물질 원천기술 개발 및 제조기술 개발 ▲ 혁신적 에너지 저감이 가능한 고순도 정제 공정개발 등 사업성이 높고 글로벌 시장에서 경쟁력을 확보할 수 있는 기술개발에 중점을 둘 계획이다. 연구진으로는 네이처 바이오테크놀러지(Nature Biotechnology)가 발표한 2014년 세계 최고 응용생명과학자 20인에 선정된 이상엽 특훈교수, ‘2015 세계화학대회’에서 여성학자상을 받은 이현주 교수 등 KAIST 생명화학공학과 주요 교수들이 참여한다. 연구소가 개발한 신기술 특허권은 50:50 지분으로 KAIST와 한화케미칼이 공동으로 소유하고 상업적 생산이 시작되면 한화케미칼은 이익의 일부를 KAIST와 공유할 계획이다. 이밖에 5년 동안 연구과제를 수행하면서 총 15명의 KAIST 박사과정 학생을 산학장학생으로 선발해 장학금을 지원하기로 했다. 양 기관은 이번 연구소 설립이 국내 석유화학 업계의 경쟁력을 높일 수 있는 계기가 될 것으로 기대하고 있다. 범용중심의 국내 석유화학 산업이 저유가, 셰일가스 개발, 글로벌 경기 침체 등 다양한 대외 리스크를 극복하기 위해서는 미래형 원천기술 확보가 중요하기 때문이다. 연구책임자인 이상엽 KAIST 특훈교수는 “한화케미칼과 협력을 바탕으로 KAIST의 우수한 R&D 역량을 집중해 글로벌 경쟁력이 있는 독보적인 기술을 개발하겠다”라고 말했다. 김창범 한화케미칼 사장은 “일반적인 산학협력을 벗어나 공동으로 연구소를 운영하는 모델이라는데 의의가 있으며, 상호간 기술 공유를 통해 혁신적인 성과 창출로 산학협력의 새로운 이정표를 세울 것”이라고 강조했다. 한화케미칼 중앙연구소는 1979년 대덕특구 내에 설립되었으며 석유화학뿐만 아니라 태양광, 탄소나노 분야 등 한화그룹의 신성장 동력의 산실로 신제품 및 신기술 개발을 이끌어 가고 있다. 끝.
2015.11.01
조회수 7573
바이오부탄올 핵심생산효소 구조 및 특성 규명
이 상 엽 특훈교수 우리 대학 생명화학공학과 이상엽 교수 연구팀이 경북대학교 김경진 교수 연구팀과의 공동연구를 통해 친환경 차세대 에너지인 바이오부탄올의 핵심 생산 효소인 싸이올레이즈(Thiolase)의 구조 및 특성을 규명했다. 연구 결과는 네이처 커뮤니케이션즈(Nature Communications) 9월 22일자 온라인 판에 게재됐다. 바이오부탄올은 바이오연료로 이미 사용되고 있는 바이오에탄올을 능가할 수 있는 친환경 차세대 수송용 바이오연료로 각광받고 있다. 바이오부탄올의 에너지 밀도는 리터당 29.2MJ(메가줄)로 바이오에탄올(19.6MJ)보다 48% 이상 높고 휘발유(32MJ)와 큰 차이가 없다. 또한 폐목재, 볏짚, 잉여 사탕수수, 해조류 등 비식용 바이오매스에서 추출하기 때문에 식량파동 등에서도 자유롭다. 바이오부탄올의 가장 큰 장점은 휘발유와 비교했을 때 공기연료비, 기화열, 옥탄가 등 연료 성능이 비슷해 현재 자동차 등에 사용되고 있는 가솔린 엔진을 그대로 사용할 수 있다는 점이다. 바이오부탄올은 클로스트리듐이라는 미생물로부터 생산이 가능하지만 클로스트리듐의 주요 효소의 구조 및 기작 등에 대한 연구는 체계적으로 이뤄지지 못했다. 이 교수 연구팀은 이 미생물의 성능 향상을 위해 바이오부탄올 생합성에 필요한 주요 효소 중 하나인 싸이올레이즈의 3차원 입체구조를 포항방사광가속기를 이용해 규명했다. 이를 통해 일반적인 미생물의 효소에서는 발견되지 않고 클로스트리듐 내의 싸이올레이즈에서만 관찰되는 산화-환원 스위치 구조를 발견했다. 또한 가상세포모델 등을 활용한 시스템대사공학 기법을 활용해 이 싸이올레이즈가 실제 미생물 내에서 산화-환원의 스위치로 작동한다는 것을 증명했다. 연구팀은 밝혀낸 싸이올레이즈 구조의 원천기술을 활용해 활성이 향상된 돌연변이 효소를 설계했다. 그리고 이를 이용해 바이오부탄올 생산 미생물의 대사회로를 조작해 바이오부탄올 생합성이 향상되는 결과를 얻었다. 이상엽 교수는 “바이오부탄올 생합성 대사회로에서 가장 중요한 효소의 구조와 작용 기작을 세계 최초로 밝혔다”며 “싸이올레이즈 관련 원천기술을 활용해 바이오부탄올을 더욱 경제적으로 생산할 수 있는 대사회로 구축에 응용하겠다”고 말했다. 김상우, 장유신, 하성철 박사가 공동 1저자로 참여한 이번 연구는 미래창조과학부와 한국연구재단의 기후변화대응기술개발사업 및 글로벌프런티어 차세대바이오매스사업단 지원을 받아 수행됐다. □ 그림 설명 그림 1. 바이오부탄올 생산 효소(thiolase)의 구조 및 산화-환원 스위치 작용기작 그림 2. 바이오부탄올 생산을 위한 포도당 대사회로에서 바이오부탄올 생산 효소(thiolase)의 산화-환원 스위치 작용기작
2015.09.22
조회수 8837
KAIST, 하계 다보스포럼에 국내 대학 중 유일하게 초청받아
우리 대학이 오는 9~11일 중국 다롄 국제컨퍼런스센터(ICC)에서 열리는 세계경제포럼 하계대회(일명 하계 다보스포럼)에 국내 대학 가운데 유일하게 초청받았다. 하계 다보스포럼(정식명칭 : 새로운 챔피언들의 연차총회)은 중국이 스위스 다보스포럼처럼 세계 경제와 글로벌 이슈를 주도하기 위해 2007년부터 매년 중국에서 개최하는 국제회의이다. ‘성장을 위한 새로운 항로 작성’을 주제로 열리는 올해 포럼에는 90개국 1천500여 명의 정 ‧ 관 ‧ 학계 인사들이 참여해 글로벌 혁신 이슈와 과학기술을 주제로 다양한 세션에서 발표와 토론을 진행한다. KAIST는 이번 포럼에서 전 세계 리더들에게 최신 연구동향을 소개하고 함께 토론하는 자리인 ‘아이디어스랩(IdeasLab)’을 국내 대학 가운데 유일하게 4회 째 운영한다. ‘바이오 소재 vs 나노 소재’를 주제로 열리는 이번 세션은 ‘차세대 산업혁명을 이끌 소재는 무엇이 될 것인가’를 두고 발표와 토론이 진행된다. 회의는 미국 프린스턴대학교 린 루(Lynn Loo) 교수가 사회자로 나서‘토론 랩(Debate Lab)’이라는 새로운 방식으로 진행되며 청중들은 토론 전후에 걸쳐 이슈에 대한 투표도 진행한다. 먼저 세션 위원장을 맡은 강성모 KAIST 총장이 KAIST 현황과 아이디어스랩을 소개하고 이어 사회자가 바이오 소재와 나노 소재의 토론자와 토론 규칙을 설명한다. ‘바이오 소재’분야 토론자로 이상엽 생명화학공학과 특훈교수와 이해신 화학과 교수가 참가해‘생물을 해킹해 플라스틱을 만든다’와 ‘의료용 생체적합성 물질’을 주제로 각각 발표한다. 이어 ‘나노 소재’ 토론자로 정희태 생명화학공학과 석좌교수와 조은애 신소재공학과 교수가 나와 ‘자기조립 나노 물질’과 ‘수소연료를 위한 나노 리파이너리’를 주제로 각각 발표한다. 발표에 이어 세션 참가자들과 발표자들은 ‘바이오 물질과 나노 물질 중 어느 것이 차세대 산업혁명을 이끌 것인가’를 주제로 토론도 진행한다. 이밖에 강성모 KAIST 총장은 글로벌대학리더스포럼(GULF)이 주관하는 ‘산학협력’세션의 토론 리더로도 참여해 구오핑(Guo Ping) 중국 화웨이 부회장, 쟝 뤽 로윈스키(Jean-Luc Lowinski) 사노피 차이나(Sanofi China) 수석 부회장과 함께 산학협력에 관해 토론한다. 강 총장은 현재 세계경제포럼의 GULF 멤버이면서 전자공학의 미래에 관한 글로벌 아젠다 카운슬 의장도 맡고 있다. 강 총장은 “KAIST는 하계 다보스포럼의 초청으로 4회 째 아이디어스랩을 주관한다”며 “KAIST의 혁신적 연구성과가 세계적 수준으로 평가받고 있어 자랑스럽다”라고 밝혔다. 끝.
2015.09.08
조회수 7326
이상엽 교수, 2014년 최고 응용생명과학자 20인 선정
이 상 엽 교수 우리 대학 생명화학공학과 이상엽 특훈교수가 ‘네이처 바이오테크놀로지(Nature Biotechnology)’가 발표한 2014년 세계 최고 응용생명과학자 20인에 선정됐다. 세계 최고 응용생명과학자 20인은 2014년 생명공학관련 특허 영향력을 기준으로 하고 학술지 발표논문의 영향력 지수를 참조해 네이처 바이오테크놀로지가 선정했다. 이번에 선정된 20인 중 미국인이 아닌 사람은 호주 연방과학원(CSIRO)의 서린더 싱 박사와 KAIST의 이상엽 교수뿐으로 유일한 아시아권 선정자라는 점에서 의미를 갖는다. 이상엽 교수 외에도 스크립스 연구소(Scripps Research Institute)의 피터 슐츠 박사, 매사추세츠 공대(MIT)의 로버트 랭거 교수, 캘리포니아 공대(Calxtech)의 데이비드 발티모어 교수, 터프츠 대학(Tufts University)의 데이비드 카플란 교수 등 세계적 석학들이 20인에 선정됐다. 이상엽 특훈교수는 미생물대사공학의 세계적 석학으로 500여 편의 학술지 논문을 게재했고, 580여 건의 특허를 등록 및 출원했다. 또한 세계 최고 성능의 미생물 화학물질 생산 시스템을 다수 개발했다. 이상엽 교수는 “아시아에서 유일하게 20인에 선정된 것은 우리의 연구가 세계를 선도하고 있다는 것을 보여주는 뜻 깊은 결과라고 생각한다”고 소감을 밝혔다.
2015.08.26
조회수 7137
대장균 이용 농·의약품 및 나일론 전구체 제작 원천기술 개발
<이 상 엽 특훈교수> 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 11일 세계 최초로 미생물을 이용한 1,3-다이아미노프로판(원, 쓰리-다이아미노프로판) 생산에 성공했다. 이번 연구결과는 사이언티픽 리포트(Scientific Reports) 11일자에 게재됐다. 1,3-다이아미노프로판은 에폭시 수지의 가교제와 의약 및 농약제품 제작에 이용되는 핵심 화학물질이다. 또한 중합반응을 통해 의료용 접착제, 엔지니어링 플라스틱 등으로 이용되는 나일론(폴리아마이드)을 제작할 수 있다. 이 1,3-다이아미노프로판은 현재 석유를 통해 생산된다. 그러나 기후변화와 환경문제를 유발하고 한정자원인 석유화학공정을 이용한다는 한계가 있어 연구팀은 지속가능한 친환경 바이오화학공정으로 재편에 힘쓰고 있다. 이상엽 교수 연구팀은 세계 최초로 대장균을 이용한 1,3-다이아미노프로판 생산에 성공해 지속가능한 자원인 바이오매스로부터 생산 가능성을 열었다. 연구팀은 자체적으로 1,3-다이아미노프로판을 생산할 수 없는 대장균의 문제점 해결을 위해 시스템 대사공학을 이용했다. 시스템 대사공학은 세포전체 대사회로를 정량, 정성적 분석 후 시스템 수준에서 총체적으로 조작해 원하는 화합물을 대량생산하는 기술이다. 연구팀의 생산 과정은 ▲외래 미생물의 1,3-다이아미노프로판 생산 대사회로를 컴퓨터 가상 세포에 도입해 가장 효율적인 대사회로를 결정한 후 ▲이 대사회로를 실제 대장균에 도입해 1,3-다이아미노프로판 생산 ▲마지막으로 추가적인 시스템 대사공학을 통해 약 21배 이상 생산량을 증가시켜 최종 발효를 통해 배양액 1 리터당 13그램의 1,3-다이아미노프로판 생산에 성공했다. 이 기술로 재생 가능 비식용 바이오매스를 이용한 1,3-다이아미노프로판 생산이 가능해져 기존 석유기반 화학 산업을 바이오리파이너리(Bio-refinery)로 대체할 수 있을 것으로 기대된다. 이 교수는 “이번 연구는 세계 최초로 KAIST 연구실에서 바이오리파이너리를 통해 1,3-다이아미노프로판 생산 가능성을 제시한 점에서 의의를 갖는다”며 “더 많은 연구를 통해 생산량 및 생산성을 증산할 계획이다”고 말했다. 이번 연구는 미래창조과학부의 기후변화대응 기술개발사업의 지원을 받아 수행됐고, KAIST 채동언(박사과정) 학생이 제 1저자로 참여했다. □ 그림 설명 그림 1. C4 대사회로를 이용하여 1,3-다이아미노프로판을 생산하기 위한 대사공학 전략들 그림 2. 최종적으로 엔지니어된 대장균들의 발효 프로파일
2015.08.11
조회수 7598
이상엽 교수, 제50회 발명의 날 홍조근정훈장 수훈
이 상 엽 교수 우리 대학 생명화학공학과 이상엽 특훈교수(52)가 19일 제 50회 발명의 날에 홍조근정훈장을 수훈했다. 근정훈장은 공무원 및 사립학교 교원으로 직무에 정려해 공적이 뚜렷한 자에게 수여되며, 홍조근정훈장은 3등급에 해당한다. 이 교수는 세계적으로 인정받는 미생물 기반 화학물질 생산 원천기술을 다수 개발해 다가올 바이오 기반 화학 산업의 경쟁력을 최고 수준으로 끌어올린 공을 인정받았다. 또한 미생물 대사공학 분야 연구를 지속해 세계 최초로 시스템대사공학을 창시했으며 다수의 관련 균주개발 원천기술을 개발했다. 이 교수는 생물공정 관련 다양한 특허권을 확보했다. 대학 재직 기간 동안 총 585건의 특허를 출원했고 227건의 특허를 등록했다. 특히 지난 5년간 135건의 특허를 출원했고 99건의 특허를 등록해 다수의 기술을 산업체에 성공적으로 기술 이전했다. 이 교수는 “우리나라 산업경쟁력을 높이고 국가 위상 향상에 기여할 수 있어 기쁘다”며 “대학원생들과의 공동 특허 출원을 통해 이들이 사회에 진출해 국가 경쟁력 강화에 도움이 되도록 교육에 힘쓰겠다”고 말했다.
2015.05.19
조회수 6230
전상용 교수, 미국 의생명공학원 펠로우 선임
전상용 교수 우리 대학 생명과학과 전상용 교수가 미국 의생명공학원(American Institute for Medical and Biological Engineering, AIMBE) 2015년도 펠로우(석학회원)로 선임됐다. 미국 의생명공학원은 1991년 창립해 의생명공학 분야의 상위 2%에 속한 산학연 전문가들이 모인 비영리기관으로, 인류를 위한 관련 분야 기여를 목적으로 정책수립 및 자문을 수행하는 기관이다. AIMBE 펠로우는 지난 25년간 약 1,500여 명이 선임됐고, 그 중 미국 국적이 아닌 사람은 110여 명뿐이다. 전상용 교수는 우리나라에서 이해방 前 한국화학연구원 선임부장과 우리 대학 생명화학공학과 이상엽 특훈교수에 이어 세 번째로 선임돼, 15일부터 3일간 개최되는 AIMBE 정기총회에서 정식 펠로우 선임식을 갖는다. 전 교수는 나노의학 분야 전문가로서 질병 진단 및 치료를 위한 다기능성 테라노스틱스 나노입자 관련 원천기술을 다수 개발했다. 지난 2월 나노의학 분야 학술지 ‘테라노스틱스(Theranostics)로부터 최다 피인용 논문상을 수상했다. 전상용 교수는 실험실 기술을 임상에 적용하는 ‘Bench to Bedside’ 중개연구의 대표적 연구자로서, 다양한 기술이전 및 바이오벤처 회사 설립 등 사업화 방면으로도 활발하게 활동하고 있다.
2015.03.12
조회수 8748
이상엽 특훈교수 셀 시스템즈(Cell Systems) 창간 편집위원 선임
우리 대학 생명화학공학과 이상엽(51) 특훈교수가 셀 시스템즈(Cell Systems)의 초대 창간 편집위원에 선임됐다. 올해 7월 첫 발간이 되는 셀 시스템즈는 네이처, 사이언스와 함께 세계 3대 학술지로 알려진 셀(Cell)에서 창간하는 자매지로서, 생명공학의 시스템을 이해할 수 있는 폭 넓은 분야를 다룬다. 셀 시스템즈는 획기적인 발견 및 다양하게 활용할 수 있는 연구도구, 특히 바이오 분야의 정량적이고 통합적인 시스템 연구결과들을 소개할 예정이다. 이 교수는 엔지니어링 플라스틱 원료와 비(非) 천연 화학물질의 생산기술을 개발하는 등 미생물대사공학 분야의 선구자이다. 바이오테크놀로지 저널(Biotechnology Journal)편집장 등 20여 개의 국제 학술지 편집에 관여하고 있고, 세계경제포럼의 글로벌 아젠다 카운슬 멤버와 국가과학기술자문회의 위원으로 활동 중이다. 이 교수는 “셀 시스템즈에서 전체 생물학적 시스템을 체계적으로 다루는 연구결과들을 소개할 것”이라며 “시스템생물학과 시스템생명공학의 대표적 학술지가 될 셀 시스템즈에 우리나라 학자들의 연구결과가 많이 게재되길 바란다”고 말했다.
2015.02.09
조회수 7123
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 13