-
방사선에도 문제없는 초저에너지 메모리 최초 개발
지상에서 잘 동작하던 반도체 메모리가 우주나 비행기 안에서 갑자기 오동작을 일으키는 일이 있는데, 이는 고고도에 존재하는 방사선 때문이다. 이 뿐만 아니라, 최근 자율 주행 운송 수단과 같이 사람의 안전이 중요한 장치에 사용되는 반도체 메모리도 대기 방사선에 의해 오동작할 확률이 있다는 연구 결과들이 보고되면서 방사선에 대해 높은 안정성을 갖는 메모리 소자의 중요성이 점차 증가하고 있다.
우리 대학 전기및전자공학부 윤준보 교수 연구팀이 나노종합기술원(원장 이조원) 강민호 박사와의 협업을 통해 우주 부품 수준의 내방사선 특성을 가지면서도 일반적인 비휘발성 플래시 메모리보다 30,000배 이상 프로그래밍 에너지가 낮은 나노 전자 기계식 비휘발성 메모리 소자를 세계 최초로 개발했다고 28일 밝혔다.
전기및전자공학부 이용복 박사과정이 제1 저자로 수행한 이번 연구는 저명 국제 학술지 `네이처 커뮤니케이션즈 (Nature Communications)' 2023년 1월호에 출판됐다. (논문명: Sub-10 fJ/bit radiation-hard nanoelectromechanical non-volatile memory). (Impact Factor : 17.690). (https://www.nature.com/articles/s41467-023-36076-0)
반도체 메모리 소자들은 동작 원리상 근본적으로 방사선에 취약해, 이를 보완하기 위해서는 복잡한 회로나 추가적인 데이터 프로세싱을 수반하는데 그 과정에서 많은 에너지가 소모된다. 즉, 일반적인 반도체 메모리 소자들은 내방사선과 낮은 동작 에너지를 동시에 만족하는 것이 매우 어렵다는 것을 의미한다.
윤준보 교수 연구팀은 방사선에 원천적으로 강인한 특성을 가진 나노 전자 기계 기술(Nano Electro Mechanical System, NEMS)을 활용해 고에너지 방사선에도 강인할 뿐만 아니라 매우 낮은 프로그래밍 에너지를 가지고, 전원이 공급되지 않아도 저장된 정보를 유지할 수 있는 비휘발성 메모리 소자를 세계 최초로 개발했다.
연구팀은 반도체 메모리를 사용하는 대신, 나노 크기의 매우 작은 기계 구조에 전기 신호를 가함으로써 나노 기계 구조체가 실제로 움직여서 하부 전극에 붙고 떨어지는 방식을 사용하였다. 또한, 매우 낮은 프로그래밍 에너지를 달성하기 위해 파이프-클립 스프링 구조와 구부러진 외팔보 구조로 구성된 상부 전극을 도입했으며, 특히 파이프-클립 모양의 나노 기계 구조에 전류를 가해 열을 내는 구동 방식을 통해 프로그램된 구조체가 초기 상태로 복구할 수 있도록 하여 반복적인 프로그램 동작에도 낮은 프로그래밍 에너지를 유지할 수 있도록 하였다.
연구진은 나노종합기술원의 반도체 장비·시설 인프라를 활용해 8인치 웨이퍼 수준의 대면적 기판에 신뢰적으로 소자를 제작했고, 제작한 나노 전자 기계식 비휘발성 메모리의 프로그래밍 에너지는 차세대 메모리들과 비교했을 때도 매우 낮은 수준이었다. 또한, 기계적인 움직임을 기반으로 하는 동작 방식 덕분에 고에너지 방사선 조사 후에도 누설 전류 증가, 동작 전압 변화, 비트 오작동 등의 성능 저하 없이 우수한 내방사선 특성을 보였다.
연구개발에 주도적으로 참여한 이용복 박사과정은 “이번 연구 결과는 연구팀이 보유한 나노 전자 기계 설계 기술과 나노종합기술원의 첨단 공정 기술이 만나 내방사선 특성과 낮은 동작 에너지 소모를 동시에 만족하는 비휘발성 메모리를 세계 최초로 구현했다는 점에서 중요한 의미를 가지고, 해당 기술은 우주 환경에서의 인공지능, 초안정성 자율주행 시스템 등 내방사선과 높은 에너지 효율성이 필요한 다양한 미래 응용 분야에서 핵심 기술이 될 것” 이라고 말했다. 또한, “세계 차세대 반도체 시장에서 우리나라가 메모리 원천 기술을 선도할 수 있도록 기여하고 싶다”며 앞으로의 계획을 밝혔다.
해당 기술과 관련해 미국, 중국, 대만, 한국 등에 6건의 특허가 출원돼 있다.
한편, 이번 연구는 한국연구재단의 차세대지능형반도체기술개발사업과 삼성전자의 지원을 받아 수행됐다.
2023.02.28
조회수 1934
-
RNA 합성에서 ‘기다림의 미학’ 규명
DNA에서 RNA를 생성하는 과정을 마무리 짓는 전사종결인자가 단백질 로(이하 Rho)이다. 일반 단백질이 작용물질에 미리 붙어 있으면 반응이 빨리 된다는 통념과 다르게 RNA 중합효소에 붙어 기다리는 Rho는 중합효소가 오래 멈출수록 종결 효율이 높아진다는 유의미한 결과가 발표되었다. 이번 연구 결과를 통해 자연에서 기다림의 미학이 증명된 것이다.
우리 대학 생명과학과 강창원 명예교수(KAIST 줄기세포연구센터 고문)와 서울대학교 물리천문학부 홍성철 교수의 공동 연구팀이 우리 대학 화학과 강진영 교수, 우리 대학 생명과학과 서연수 교수 연구팀과 협업 연구를 통해 RNA 합성 종결인자의 동역학적 특성을 발견했으며 그런 특성이 유전자 발현 조절에 미치는 생물학적 기능을 규명했다고 27일 밝혔다.
공동 연구팀은 세균의 전사 종결에 단백질 Rho가 관여하는 분자기작에 관해 작년에 국제학술지 네이처 커뮤니케이션즈(Nature Communications)에 발표한 바에 따르면, Rho가 중합효소에 미리 결합해 RNA의 특수부위를 기다린 후 중합효소‧DNA‧RNA의 전사 복합체를 해체하는 방식과 Rho가 RNA에 먼저 결합해 중합효소를 쫓아간 후 복합체를 해체하는 방식, 쫓아간 후 RNA만 방출하고 중합효소가 DNA에 남는 방식 등 세 갈래로 나뉘어 진행된다. (아래 그림 참조)
그런데 흥미롭게도 세 갈래 진행하는 속도가 기존 통념과는 다른 새로운 사실을 발견했다. 기존에는 Rho가 RNA에 붙어 중합효소를 쫓아가서 끝내는 방식과 비교하면 Rho가 중합효소에 미리 붙어 기다렸다가 끝내는 방식이 쫓아가는 시간이 들지 않기 때문에 더 빠를 것으로 인식되어 왔다. 하지만 공동 연구팀의 연구 결과는 기다려서 끝내는 방식이 오히려 더 느렸다. 그런데 느린 기다림 방식은 중합효소의 멈춤 시간이 길수록 종결 효율이 높고 상황에 따라 달라질 수 있는 반면에 쫓아가는 빠른 방식은 종결 효율이 중합효소 멈춘 시간과 상관이 없으며 상황에 따라 변화의 여지도 없다는 사실을 새롭게 밝혔다.
RNA가 방출되는 전사 종결이 일어나려면 RNA의 연장 합성이 일단 멈춰야 한다. 종결이 더디게 일어나려면 멈춤이 오래 유지되어야 하므로 전사 멈춤 시간과 전사 종결 효율의 상관관계를 이번 공동 연구에서 분석했다. 연구 결과, 기다려서 전사의 세 갈래 끝내기 방식이 진행하는 속도가 제각각 다를 뿐 아니라 그 조절 양상도 다르다는 것을 처음으로 규명한 것이다.
생물물리학 분야 첨단 기술인 단일분자 실험을 수행한 서울대 물리천문학부 송은호 박사과정 대학원생이 제1 저자로 참여한 이번 논문(제목: Transcriptional pause extension benefits the stand-by rather than catch-up Rho-dependent termination)은 저명 국제학술지 핵산연구(Nucleic Acids Research, 최근 영향지수 = 19.160)에 지난 2월 10일 자 게재됐다. KAIST 팔린다 무나싱하 박사, KAIST 황승하 박사과정 대학원생도 참여해 저자가 총 7명이다.
송은호 제1 저자는 "기존 통념과 상반된 결과를 처음 발견했을 때 당황스러웠지만 데이터를 꾸준히 쌓아가고 적절한 통계 모델을 통해서 그 결과를 검증해냈을 때 뿌듯했고, 또 이 발견의 생물학적 역할을 규명했을 때 더욱 기뻤다ˮ며 "항생제 개발 등에 중요한 단서를 줄 것이다ˮ라고 연구의 의의를 설명했다.
이번 공동 연구에는 단일분자 형광 기술을 구사하는 물리학자, 유전자 발현을 탐구하는 생명과학자, 중합체 구조를 분석하는 화학자가 두루 참여했다. 다양한 분야의 전공자가 꾸준히 협업하는 다학제 기초과학 연구의 우수 사례이며, 이번 연구는 한국연구재단 중견연구자지원사업, KAIST 고위험‧고성과 연구사업의 지원을 받았고, 논문게재비는 KAIST에서 지원했다.
2023.02.27
조회수 1707
-
2023 학위수여식 개최
우리 대학이 17일 오후 2시 대전 본원 스포츠 컴플렉스에서 2023년도 학위수여식을 개최했다. 코로나19 대유행 이후 처음으로 졸업생 전체가 참여하는 행사로 진행했다.
박사 691명, 석사 1천464명, 학사 715명 등 총 2천870명이 학위를 받으며, 1971년 설립 이래 박사 1만 5천772명을 포함해 석사 3만 8천360명, 학사 2만 867명 등 총 7만 4천999명의 졸업생을 배출하게 된다. 류가빈(23, 기계공학과) 씨는 학사과정 수석졸업자로 과학기술정보통신부 장관상을 받는다. 이사장상은 이승주(24, 전산학부) 씨, 총장상은 태국 유학생인 잔타칸 네생팁(23, 화학과) 씨가 받는다. 동문회장상과 발전재단 이사장상은 각각 황재용(25, 물리학과) 씨와 이준모(23, 산업및시스템공학과) 씨가 수상한다. 이종호 과학기술정보통신부 장관은 우수 졸업자를 시상하고 축사했다.
또한, 2004년도에 학부에 입학한 뒤, 19년 만에 박사학위를 받는 차유진(38, 바이오및뇌공학과) 씨가 졸업생 대표연설을 맡는다. 차 씨는 원자력및양자공학과를 졸업한 뒤 의학전문대학원에 진학해 방사선종양학과 전문의가 되었지만, 골육종을 앓던 어린 환자의 죽음을 계기로 다시 과학자의 길을 걷기 위해 모교로 돌아왔다. 현대의학의 한계를 극복하는 길은 결국 과학기술에 있으며, 과학자가 되어 그 답을 찾아가겠다는 꿈과 함께 2018년 바이오및뇌공학과 박사과정에 입학했다.
의사가 환자의 병을 진단하는 과정에서 발생하는 의사결정의 특성을 뇌과학적인 관점에서 규명하고 이를 활용한 뇌 기반 인공지능 알고리즘을 개발했다. 다양한 전공 분야의 임상 의사 약 200명을 피험자로 참여시켜 수집한 데이터로 본질적인 기계학습 이론 개발을 시도한 독창적이고 도전적인 연구다.
차 씨는 "인간은 인공지능이 가진 고유한 학습 능력을 활용해 자신의 전문성을 계발하고, 인공지능은 인간의 학습 능력을 모사해 성장하는 방식으로 협력할 수 있다"라고 말했다. 이어 "인간과 기계가 상대에게 미치는 영향에 반응하면서 진화하는 '공진화(共進化, coevolution)'의 단계까지 기술을 발전시켜 의료뿐만 아니라 모든 분야에 활용하는 것이 궁극적인 목표"라고 말했다.
현재 KAIST 의과학연구센터 연구 조교수로 재직 중인 차 씨는 의료인이 임상 현장에서 인공지능을 활용하는 것을 돕기 위해 2017년 『의사를 위한 실전 인공지능』을 저술했으며, 이 책은 '2018 세종도서' 학술부문 우수도서로 선정되기도 했다. 17일 열리는 학위수여식에서는 "세상에는 해결하기 어려운 일들이 너무나 많지만, 세상의 지평을 넓히고 당면한 문제들을 해결할 수 있는 길은 과학기술이라고 믿는다"라는 메시지를 담은 대표연설을 할 예정이다.
또한, 싱어송라이터 박새별(38, 문화기술대학원) 씨가 박사학위를 받는다. 최근 화제가 된 챗GPT처럼 인공지능 분야에서는 컴퓨터가 인간의 언어를 이해하고 분석하게 만드는 ’'자연어 처리'가 활발하게 연구되고 있다. 박 씨는 이 기술을 활용해 언어 대신 음악을 인공지능으로 분석하는 연구를 수행했다. 소리의 형태인 음악을 자연어 처리 방식으로 분석하기 위해서는 음표와 박자 등을 마치 언어처럼 문장이나 단어의 형태로 구현하는 작업이 필요한데, 이 과정에서 멜투워드(Mel2Word)라는 알고리즘을 직접 고안해 연구에 적용했다. 또한, 멜로디를 텍스트로 바꿔 분석하면 단순하게 음정을 표현하는 소릿값이 아니라 단어 혹은 문장으로서 의미와 맥락을 가진 수치들로 표현할 수 있다고 제안했다. 박 씨는 "그동안 주관적인 감상과 정서의 산물로 여겨지던 음악을 객관적인 수치로 계산해 분석할 수 있는 정량적 틀을 개발한 연구다"라고 설명했다. 박 씨의 연구 결과는 향후 음악의 유사성은 물론 독창성·예술성·대중성까지 측정할 수 있는 도구로 발전할 수 있으며, 인지과학적 측면에서 인간이 음악에 반응하는 근본 원리를 탐구하는 실마리로 활용될 수 있다.
2014년 박사과정에 입학한 박 씨는 학업과 함께 본업인 음악 활동은 물론 대중 강연과 대학 강의를 병행하고 결혼과 출산이라는 개인적인 중대사도 치렀다. 2019년 학위 이수 요건을 갖췄지만, 연구의 완성도를 위해 졸업을 늦춘 끝에 9년 만의 결실을 얻게 됐다. 박 씨를 지도한 남주한 문화기술대학원 교수는 "학부에서 심리학을 전공한 박새별 씨는 석박사 연구를 위해 늦게 배운 코딩으로 인공지능 분야에서 수준 있는 연구를 마무리해냈다"라고 전했다. 이어, 남 교수는 "오랜 시간이 걸렸지만, 연구자로서 끝까지 포기하지 않는 자세 또한 훌륭하다"라고 덧붙였다.박새별 씨는 현재 연세대 언더우드 국제학부에서 문화기술(Culture Technology) 과목과 음악 정보 검색(Music Information Retrieval) 과목을 강의하고 있다. 박 씨는 "KAIST에서 석박사를 했던 10년여의 기간은 학문적 지식뿐만 아니라 인생의 모든 면에서 배우고 성장할 수 있었던 시간이었다"라며, "박사는 끝이 아니라 시작(Commencement)이기 때문에 이제 뿌려진 작은 씨앗을 더 뿌리 깊게 내리며 좋은 학자로서, 그리고 아티스트로서 더 열심히 살아 나가겠다"라고 소감을 전했다.
이뿐만 아니라, 사회문제 해결을 꿈꾸는 청년 창업가들도 학사모를 쓴다. 경영공학부 사회적기업가 MBA 과정에서 석사학위를 취득하는 문준석(40), 서인아(31) 씨다.문준석 씨는 입학 전 아프리카 난민의 자립을 돕는 카페를 운영했다. 이후 사업의 규모를 확대하고 복지와 인권의 사각지대에 놓인 난민을 지속 가능한 방식으로 돕는 사회적기업 경영을 배우기 위해 KAIST에 진학했다.
문 씨는 학위 과정 중 커피를 바꾸는 것만으로도 적극적인 탄소 저감을 이뤄낼 수 있다는 아이디어로 사업 분야를 전환하고 ㈜이퀄테이블을 창업했다. 개인이 종이컵 한 개의 사용을 줄여서 저감할 수 있는 탄소의 양은 10g이지만 커피 자체를 바꾸면 300g의 탄소를 줄일 수 있기 때문이다.
커피는 농장에서의 생산부터, 유통, 가공, 소비에서 커피 1kg당 15kg의 탄소가 배출되는데 문 씨는 이 전체 과정의 혁신을 통해 탄소중립에 가까운 커피 원두를 생산하고 있다. 특히, 탄소중립인증 농장의 생두를 100% 재생에너지로 로스팅한 탄소저감커피를 기업에 제공하고 탄소저감량을 함께 보여주는 기업 대 기업 ESG 비즈니스 솔루션이 문 씨의 새로운 창업 분야다. 첫 파트너인 SK텔레콤과 협력해 이달 중 서비스를 시작한다.
함께 졸업하는 서인아 씨는 환경오염을 줄이는 방식의 패션 사업을 하기 위해 ㈜컨셔스웨어를 창업했다. 사명감을 실현하기 위해서는 그와 부합하는 경영 전문성이 필요하다는 생각에 사회적기업가 MBA 과정을 시작했다.
서 씨는 의류 산업 중에서도 80조 원 규모의 가죽 시장에 주목했다. 동물 가죽은 두께나 오염 문제로 원단의 60%만 사용하고 나머지는 버려진다. 가공하는 과정에서 중금속을 사용해 환경에 직접적인 영향을 미친다.
서 씨는 사회적기업가 MBA 과정을 통해 연계된 SK케미칼과 협력해 친환경 가죽 가방을 출시했다. 폐기된 가죽을 갈아서 재가공한 재생 가죽을 바이오소재(PO3G)로 가공한 제품이다. 90% 이상 생분해 가능한 PO3G를 재생 가죽에 적용한 최초의 사례로, 가공과 폐기 단계에서 환경오염을 줄이는 동시에 기존 소가죽 제품 대비 탄소배출량과 물 사용량도 10분의 1 수준으로 감축할 수 있다. 문준석 씨와 서인아 씨가 졸업한 사회적기업가 MBA 과정은 올해부터 녹색경영정책 프로그램과 통합된 임팩트(Impact) MBA 과정으로 운영된다. KAIST는 혁신적인 기술과 아이디어로 경제적 가치는 물론 환경과 사회에 의미 있는 변화를 주도하는 창업가들을 꾸준히 육성하겠다는 방침이다.
한편, 이날 학위수여식에서는 존 섹스턴(John Edward Sexton) 뉴욕대 명예총장에게 명예이학박사 학위를 수여했다.
우리 대학 관계자는 "섹스턴 총장의 오랜 고등교육 리더십과 KAIST가 NYU와의 협업을 통해 글로벌 가치창출 선도대학으로 도약하기 위한 기틀을 마련하는 과정에 기여한 공로를 인정해 명예이학박사 학위를 수여한다"라고 설명했다.
섹스턴 명예총장은 2002년부터 2016년까지 총장으로 재직하며, 2개의 해외 캠퍼스 및 다양한 해외 분원(Global Academic Sites)을 세계 각국에 설립했다. NYU의 랭킹 상승을 도모해 의대를 미국 전체 Top 2로 올려놓는 등 NYU를 초일류 대학의 반열에 올린 것은 물론 학생 수를 2만 9천 명에서 6만 명으로 파격적으로 늘리는 등 대학의 혁혁한 성장을 이뤄냈다.
또한, 섹스턴 명예총장은 재임 기간에 대학의 학업 목표를 지원하기 위한 기금 모금 활동을 활발하게 벌였다. 14년의 총장 재임 기간 중 '매일 100만 달러를 모금' 및 즉각적인 기부를 독려하는 '콜 투 액션(Call to Action)'과 같은 계획을 수립해 49억 달러의 기부금을 모금했으며, 이는 NYU 역사상 가장 큰 규모로 기록되고 있다.
섹스턴 명예총장은 총장 재임 시절에도 강의를 병행하고 학교 구성원들을 '가족'으로 표현하는 등 학생들을 특별히 아낀 일화들이 널리 알려져 있다. 특히, 학위수여식에서는 졸업생 모두를 안아주는 것으로 유명한데, 1999년 NYU 로스쿨에서 법학석사를 마친 박진 외교부 장관도 섹스턴 총장의 포옹을 받은 졸업생 중 하나다. 1942년생인 섹스턴 명예총장은 자신이 기틀을 마련한 KAIST-NYU 조인트 캠퍼스의 발전을 독려하기 위해 KAIST에 직접 방문해 명예이학박사 학위를 받았다. 또한, 섹스톤 명예총장의 명예박사학위 수여를 축하하기 위해 필립 골드버그(Philip Goldberg) 주한미국대사도 이날 KAIST 학위수여식에 참석했다. 골드버그 대사는 지난해 7월부터 주한미국대사직을 수행하고 있다.
섹스턴 명예총장은 "'함께 힘을 합쳐서 앞으로 위로 전진하자(Onward and upward together)'라는 슬로건을 좋아한다"라며, "KAIST-NYU 조인트 캠퍼스를 구축하기 위한 협력을 통해 양교가 세계 초일류의 대학으로 성장하는 비전을 달성하기를 기대한다"라고 말했다.이광형 총장은 "섹스턴 명예총장은 일생을 바쳐 교육의 다양성을 촉진하고 학문적 우수성을 추구한 인물이자 혁신과 가장 잘 어울리는 이미지를 갖춘 총장"이라고 소개했다. 이어, "섹스턴 명예총장이 마련한 기반 위에서 완성될 KAIST-NYU 조인트 캠퍼스는 양교의 시너지를 원동력 삼아 뉴욕으로 몰리는 글로벌 인재들을 흡인하는 구심점이자 KAIST 우수한 인재들이 세계를 향해 꿈을 펼쳐나갈 시작점이 될 것"이라고 말했다. 또한, 이 총장은 학위수여식사를 통해 "목표를 향하여 미래를 그려보고 노력해간다면, 미래는 내 손으로 직접 만드는 작품일 수 있다"라고 졸업생들을 격려하며, "꿈의 여정을 멈추지 말고 실패를 만나더라도 포기하지 않을 것"을 당부했다.
2023.02.17
조회수 5325
-
획기적인 반도체 소자 설계를 위한 2차원 공진기 개발
빛을 이용한 광공진기가 현대 정보·통신 산업에 필수적인 것과 같이, 양자 정보를 처리하는 차세대 반도체 소자를 설계하는 데에 활용될 수 있는 2차원 전자를 가두는 공진기*를 세계 최초로 구현하여 화제다.
*공진기란 한정된 공간 안에 파동을 가두는 장치로서 빛이나 음파, 혹은 통신 기술에 쓰이는 전자기파와 같은 파동을 제어하는 분야에서 필수적으로 활용됨.
우리 대학 응집상 양자 결맞음 센터(센터장 물리학과 심흥선 교수)는 우리 대학 물리학과 최형순 교수, 부산대학교 정윤철 교수, 전북대학교 최형국 교수와 공동연구를 통해 2차원 전자의 파동성을 이용한 공진기를 개발하는데 성공했다고 13일 밝혔다.
빛은 파동이면서도 다양한 매질 내에서 장거리 이동이 가능하다. 따라서 빛은 마주보는 거울 사이에 가두어 두더라도 소실되지 않고 여러 차례 왕복이 가능하여 광공진기 개발에 용이하고 실제로 다양한 광학소자들이 이미 폭넓게 개발되어 활용되고 있다. 반면에 물질 내부의 전자는 매질 내에서 쉽게 산란되어 빛의 파동성을 유효하게 활용하는 기술이나 소자 개발이 쉽지 않다. 이런 한계를 극복하고 전자를 이용하여 광학 기술을 모사하는 것을 '전자광학'이라고 한다. 이번 연구는 전자가 단순히 파동성을 띈다는 사실을 확인한 것에 그치지 않고 광공진기의 2차원 전자광학적 소자에 대응되는 전자공진기를 실제로 구현했다는 점에서 의미가 크다.
지금까지 직진하는 1차원 전자를 가둬 공진기를 만든 사례는 있었지만, 2차원 평면상에서 반사나 회절, 간섭 등이 복합적으로 일어나는 전자를 가둬 공진기를 만든 처음 사례이다. 이번 연구를 통해 앞으로 더욱 다양한 형태로 전자를 제어할 수 있는 원천기술로도 활용될 수 있을 것으로 기대된다.
공동연구팀은 반도체 나노소자 공정을 통해 전자의 파동을 반사할 수 있는 곡면거울을 제작하고 광공진기의 구조를 2차원 전자에 적용하여 물질 파동 또한 빛과 동일한 방법으로 가두어 둘 수 있다는 사실을 밝혀낸 것이다. 이를 위해 반도체를 극저온으로 냉각하면 반도체 내부의 전자가 수 미크론(백만분의 1미터) 정도 양자역학적 특성이 보존되는 2차원 전자 파동 형태로 존재할 수 있다. 이 반도체 위에 전극을 입히고 강한 음전압을 걸어주면 전극이 있는 영역으로는 전자가 진입하지 못하게 되므로 전자가 반사되는 거울 역할을 할 수 있다. 이 원리를 적용하여 두 개의 마주 보는 곡면거울로 이루어진 공진기 구조를 만들고 그 내부에 전자 파동을 주입하여 그 전도도를 측정함으로써 실제로 전자가 공명하는 특성이 관측하였다. 이를 통해 양자역학적 특성을 갖는 물질 파동 또한 빛과 동일한 방법으로 가두어 둘 수 있다는 사실을 밝혀낸 것이다.
우리 대학 물리학과 박사과정 박동성학생과 부산대학교 박사과정 정환철학생이 공동 제1 저자로 참여한 이 연구 결과는 지난 1월 26일 네이처 자매지인 `네이처 커뮤니케이션즈(Nature Communications)'에 게재됐다. (논문명 : Observation of electronic modes in open cavity resonator)
최형순 교수는 “동 기술은 2차원 전자계의 전자광학 발전에 새로운 가능성을 제시하는 원천기술로써 향후 다양한 양자기술 분야에도 활용될 수 있을 것으로 기대된다”라고 설명했다.
이번 연구는 한국연구재단 선도연구센터(SRC)를 중심으로 이루어졌으며 그 외에도 한국연구재단의 다양한 연구 사업(양자컴퓨팅 개발사업, 기본연구, 중견연구 지원사업 등)의 지원이 있었다.
2023.02.13
조회수 1885
-
저농도 폐수에서 암모니아 생산 기술 개발
현대사회에서 우리의 삶을 위협하는 탄소 순환 불균형에 못지않게 부각되는 질소 순환 문제가 중요한 이슈다. 특히 질산염은 수질 오염, 산성비, 그리고 최근 기승을 부리는 미세먼지의 생성 원인으로도 알려져 있으며, 암모니아는 주로 농업용 비료, 플라스틱, 폭발물, 의약품, 선박용 청정원료, 수소 운반체, 암모니아 발전 등 다양한 산업군에 쓰이는 유용한 자원이다.
우리 대학 신소재공학과 강정구 교수 연구팀이 전기를 이용해 저농도 질산염 수용액으로부터 암모니아를 생산하는 고효율 촉매를 개발했다고 8일 밝혔다.
연구팀이 개발한 전기 촉매는 구리 금속 폼(Cu foam)과 니켈-철 층상이중수산화물(NiFe Layered double hydroxide)의 복합체로 구성돼 있다. 구리 폼은 질산염을 선택적으로 흡착하고, 니켈-철 층상이중수산화물은 화학이나 생체반응을 통해 반응 중 생성된 중간체 수소 라디칼을 생성해 구리 폼에 전달함으로써 질산염이 암모니아로 바뀌도록 효율적으로 진행한다. 구리, 철, 니켈 모두 귀금속과 비교해 지구에 풍부하고 비교적 저렴하므로 연구팀이 개발한 기술은 친환경적이고 경제적인 원천기술이다.
이 기술은 질산염을 통해 직접적으로 암모니아를 생산할 수 있을 뿐 아니라, 기존 질산염 환원의 가장 큰 문제였던 저농도 질산염 수용액에서도 좋은 성능을 갖는다. 실제 하천이나 강물, 혹은 여러 질산염을 배출하는 저농도 폐수를 이용해 암모니아를 생산할 수 있어 경제적이고 실용적이다는 특성을 가진다.
김건한 박사 (現 옥스퍼드 대학교 화학과, KAIST 신소재공학과 졸업생)가 제1 저자로 참여하고, 더모트 오헤어 교수 (옥스퍼드 대학교 화학과) 연구팀이 공동으로 참여한 강정구 교수 연구팀의 이번 연구 결과는 에너지 및 환경 분야 국제 학술지 `에너지 환경 과학(Energy & Environmental Science, IF 39.71)' 1월 24일 字 온라인 게재됐다. (논문명: Energy-efficient electrochemical ammonia production from dilute nitrate solution)
현재 암모니아 생산은 대부분 `하버-보쉬 공정'을 통해 생산된다. 이 공정은 고온, 고압의 합성 조건을 전제로 하기 때문에 안전성에서 문제를 갖고 있을 뿐만 아니라 값비싼 수소 기체를 반응물로 이용하기 때문에 경제성 문제를 동시에 유발한다. 이에 대한 대안으로, 친환경적이며 값싸고 풍부한 질소 기체를 직접 전기 환원시키는 전기화학적 질소 환원법도 수용액에 대한 낮은 용해도와 강한 질소-질소 삼중결합 때문에 발생하는 낮은 효율로 큰 문제를 겪고 있다.
반면, 전기에너지를 이용해 질산염을 암모니아로 환원시키는 전기화학적 질산염 환원법은 수용액에 잘 녹는 질산염과 상대적으로 더 약한 질소-산소 결합에너지로 질소 환원법보다 더 높은 효율을 가지고 있다. 하지만, 기존의 질산염 전기 촉매의 경우, 경쟁 반응인 물 환원 반응으로 인해 암모니아로의 환원 효율이 떨어진다는 단점을 가지고 있다. 또한, 실제 하천이나 강물, 혹은 여러 질산염을 배출하는 폐수의 경우, 약 10mM(밀리몰) 이하 낮은 농도의 질산염을 포함하고 있는데, 저농도에서 촉매 특성이 급격히 떨어진다는 특성이 있다.
이에 강정구 교수 연구팀은 표면적이 넓은 구리 금속 폼을 호스트로 사용하여 저농도의 질산염이 효율적으로 흡착될 수 있도록 했다. 한편, 호스트인 구리 금속 폼에 수소 라디칼 생성이 가능한 니켈-철 층상이중산화물을 포함하는 `구리 금속 폼/니켈-철 층상이중수산화물' 복합체를 형성하였는데, 니켈-철 층상이중수산화물의 전기전도도가 낮아 질산염 환원이 일어나는 전압에서 수소-수소 결합을 통한 수소가스 (H2)를 생성하지 않고 효율적으로 수소 라디칼 (H)을 물로부터 만들 수 있었다.
강정구 교수는 "친환경적인 전기에너지를 이용해 질산염 환원법으로 암모니아를 생성하는 경우, 주로 메탄 리포밍을 통해 생산되는 값비싼 수소 기체를 이용하며 고온/고압의 반응 조건으로 유발되는 안전성 문제를 가진 하버-보쉬 공정을 효과적으로 대체할 수 있다ˮ라고 소개하면서 "특히, 반응 자리와 수소 라디칼 자리가 분리된 촉매 구조를 통해 저농도 질산염에서도 효율적으로 암모니아를 생성할 수 있기 때문에, 실제 강물, 하천, 공장 폐수에 포함돼있는 질산염을 농축시키는 과정 없이도 효율적으로 암모니아를 생산할 수 있어 질산염을 통한 암모니아 생산의 상용화에 이바지할 것이다ˮ고 말했다.
한편 이번 연구는 과학기술정보통신부 나노 및 소재기술개발사업 미래기술연구실의 지원을 받아 수행됐다.
2023.02.08
조회수 2055
-
획기적 암 치료제를 만들 단백질 코드 규명
우리 대학 의과학대학원 이지민 교수 연구팀이 유럽분자생물학연구소(EMBL) 미하일 사비스키(Mikhail Savitski) 교수, 서울대학교 백성희 교수와 공동 연구를 통해 질환의 억제와 촉진의 실마리가 되는 단백질 수명을 결정하는 단백질 *번역 후 조절(post-translational modification, 이하 PTM) 코드를 규명했다고 1일 밝혔다.
* 번역 후 조절(PTM): DNA가 mRNA가는 전사 과정을 거쳐 최종 단백질로 번역까지 일어난 이후에 추가적으로 생기는 현상으로, 단백질의 구조나 효능에 영향을 미치는 것으로 주로 알려져 있음
연구팀은 기존에 단백질의 운명 조절과 연관이 없을 것으로 생각됐던 PTM 신호를 `PTM-활성화(PTM-activated) 데그론'과 `PTM-불활성화(PTM-inactivated) 데그론'으로 구분해 단백질 수명 조절과의 관련성을 규명했다.
*PTM 활성화 데그론과 PTM 볼활성화 데그론: PTM에 의해 데그론이 활성화 되는 것은 단백질의 번역후 변화가 단백질의 분해를 촉진했다는 것을 의미하며, 반대로 불활성화 데그론은 번역 후 조절 신호가 단백질의 분해를 억제하여 단백질의 축적이 일어났음을 의미
여기서 데그론 코드란 단백질 수준을 조절 가능한 아미노산 서열의 조합 개념으로 질병의 진행이나 억제의 스위치 역할을 하는 단백질의 수명 조절 코드를 말한다.
연구팀은 이를 규명한 결과 기존 치료제가 접근할 수 없는 `기존에 약으로 만들지 못했던(Undruggable)' 신규 타깃의 정확도 높은 치료법 개발의 가능성을 열었다.
또한 연구팀은 신규 PTM 관련 코드를 다각화함으로 인해 단백질 분해 및 생성의 근본 원인을 알 수 없었던 기존의 신호 전달 체계에 PTM을 유도하거나 제거하는 효소의 역할을 재조명했다. 이번 연구를 통해 질병 관련 단백질 수명 변화 기원을 PTM 코드로 디지털화해서 미리 규명을 함으로써 그동안 단백질 수준을 마지막 단계에서 조절하는 *유비퀴틴 신호에만 집중했던 부분을 변경하도록 제안했다.
* 유비퀴틴: 단백질이 분해되기 전에 먼저 일어나는 대표적인 화학적 변화로 알려져 있으며 없어져야 할 단백질에 붙는 표지자로 널리 알려져 있음
우리 대학 의과학대학원 이지민 교수가 제1 저자로 초청돼 기고한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications, IF 17.69)' 에 지난 1월 13일 字 출판됐다. (논문명 : Control of protein stability by post-translational modifications).
이지민 교수는 "새롭게 제시한 PTM-활성화 또는 PTM-불활성화 데그론 코드의 규격화는 기존 약에 반응하지 않거나 저항성이 생기는 단백질 수준을 조절 가능한 다양한 질병 (대표적으로 암이나 퇴행성 뇌질환)의 진단 및 의약품 개발로 발전시킬 수 있을 것으로 기대된다ˮ 고 밝혔다.
한편 이번 연구는 삼성미래기술육성사업, 한국연구재단 리더연구사업,유럽분자생물학연구소 및 과학기술정보통신부 의사과학자양성사업의 지원을 받아 수행됐다.
2023.02.01
조회수 2114
-
획기적 음의 정전용량 플래시 메모리 최초 개발
우리 대학 전기및전자공학부 전상훈 교수 연구팀이 `음의 정전용량 효과(Negative Capacitance Effect, 이하 NC 효과)*'를 활용해 기존 플래시 메모리의 물리적 성능 한계를 뛰어넘는 음의 정전용량 플래시 메모리 (NC-Flash Memory)를 세계 최초로 개발했다고 18일 밝혔다.
*음의 정전용량 효과: 음의 정전용량 현상은 인가되는 전압이 증가하면 전하량이 감소함을 의미한다. 음의 정전용량 특성을 가지는 유전체 사용시, 트랜지스터에 인가되는 전압을 내부적으로 증폭하여 상대적으로 낮은 동작전압을 사용할 수 있어, 파워소모를 줄일 수 있다.
전기및전자공학부 김태호 박사과정과 김기욱 박사과정이 공동 제1 저자로 수행한 이번 연구는 저명 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' 2022년 12월호에 출판됐다. (논문명 : The Opportunity of Negative Capacitance Behavior in Flash Memory for High-Density and Energy-Efficient In-Memory Computing Applications) 이 국제학술지는 독일 와일리 출판사(Wiley-VCH)에서 발행하는 피어리뷰 과학 저널이다. (Impact Factor : 19.924)
현대 전자 소자에서 축전기(Capacitor)는 매우 중요한 구성 요소의 하나로, 전자 소자가 소형화되고 수직 방향으로 적층 되면서 축전기에 저장되는 전하량(Charge, Q)이 감소하는 문제가 생기므로 높은 정전용량(Capacitance, C)을 가진 유전체 물질이 필수적으로 요구되고 있다. 여기에 일반적인 축전기와 다르게 정전용량이 음의 값을 갖는(Negative Capacitance) 축전기를 활용한다면 다층의 축전기의 전체 정전용량을 오히려 더 증가시킬 수 있고, 차세대 소자에 적합한 높은 정전용량 소자 개발 난제를 해결할 수 있을 것이라는 가설이 제안되었다.
최근 메모리 공급업체들은 데이터의 폭발적 증가와 더 높은 용량의 솔리드 스테이트 드라이브(SSD) 및 더 빠른 액세스 시간에 대한 요구로 인해 기술 경쟁을 치열하게 하고 있다. 스토리지의 핵심 기술인 3D 낸드 플래시는 지속적으로 더 높은 층을 적층할 수 있는 기술을 요구하고 있고, 2028년에는 1,000단 이상의 메모리 적층이 필요할 것으로 예상되고 있다.
한편, 강유전체* 물질에서 보이는 `음의 정전용량 효과(NC 효과)'은 전자 소자에 인가된 외부 전압을 내부적으로 증폭해 전력 소모를 줄이는 특성이 있어, 전자 소자의 물리적 성능 한계를 극복할 수 있다는 가능성이 제시됐다. 최근 페로브스카이트 강유전체에서 NC 효과를 실험적으로 관찰했으나, 페로브스카이트 강유전체의 소형화 한계 및 CMOS 공정과의 부적합성으로 인해 NC 효과를 활용한 전자 소자의 구현에 대해 상당한 회의론을 불러일으켰다.
*강유전체: 전기적으로는 절연체이지만 자연상태에서 외부 전기장이 없어도 전기 편극을 지닐 수 있는 특이한 물리적 성질을 가진 물질
전상훈 교수 연구팀은 기존 플래시 메모리의 물리적 성능 한계를 극복하고 동작전압을 낮추기 위해, 반도체 공정에 사용되는 하프늄옥사이드(HfO2) 강유전체 박막의 NC 효과를 안정화해 저전압 구동이 가능한 강유전체 소재의 NC-플래시 메모리를 세계 최초로 개발했다. 개발된 NC-플래시 메모리는 기존 플래시 메모리 대비 전력 소모가 10,000배 이상 낮은 저전력 고성능 특성을 달성했다.
연구팀은 그뿐만 아니라 기존 컴퓨팅 구조인 폰노이만 아키텍처를 대체하여 새롭게 지향하는 인메모리 컴퓨팅을 NC-플래시 메모리를 기반으로 구현해 세계 최고 수준의 에너지 효율 또한 달성했다.
이번 연구 결과는 빠른 스토리지를 필요로 하는 최신 컴퓨팅과 네트워킹의 요구를 충족하는 차세대 낸드 플래시 메모리 개발에 있어 핵심 역할을 할 것이다.
한편, 이번 연구는 연세대학교와 협업을 통해서 이루어졌고, 한국 연구재단 지능형 반도체 기술개발사업의 지원을 받아 수행됐다.
2023.01.18
조회수 1845
-
반도체 분야 세계적인 국제학술대회 디자인콘(DesignCon)에서 최우수논문상 수상자 4명 동시 배출
반도체 설계 분야에서 세계적으로 권위를 인정받고 있는 국제학술대회인 디자인콘(DesignCon)에서 최우수 논문상 수상자 4명을 우리 대학 한 연구실에서 동시 배출해 화제다.
전체 수상자 8명 중 절반인 4명을 배출한 것도 대단한 성과인데 인텔(Intel)·마이크론(Micron)·AMD·화웨이(Hwawei)와 같이 반도체 강국으로 꼽히는 미국·중국·일본의 글로벌 빅테크 기업 소속 엔지니어 및 연구원들과 당당히 경쟁해서 따낸 것이기에 이들의 수상이 더욱 의미가 크고 값지다는 평가다.
전 세계 기업과 대학 연구실 가운데 최초이면서도 유일하게 인공지능(AI) 스스로 최적의 설계를 구현하는 강화학습(RL)을 포함한 머신러닝(ML) 기술과 3D 이종반도체 패키징(3D Heterogeneous Packaging) 기술을 결합하여 슈퍼 컴퓨터·초대형 데이터센터의 고성능 서버 등에 핵심적으로 사용되는 HBM(고대역폭 메모리) 등 차세대 인공지능(AI) 반도체를 연구하는 전기및전자공학부 김정호 교수 연구실 테라 랩(Terabyte Interconncection and Package Laboratory) 소속 박사과정 학생들의 이야기다.
이들의 연구는 인공지능이 중심이 되는 디지털 전환과 동시에 이를 가능하게 하는 인공지능 반도체와 컴퓨터의 발전을 선도하고 있다. 더 나아가 설계 과정 전체를 인공지능으로 자동화하려는 미래 방향을 제시하고 있다.
전기및전자공학부 테라 랩 소속 김성국(사진·31세)·최성욱(사진·27세)·신태인(사진·26세)·김혜연(사진·26세) 박사과정 학생 4명이 국제학회인 디자인콘(DesignCon)이 선정한 2022년 최우수 논문상 수상자로 선정됐다고 16일 밝혔다. 시상식은 오는 31일 미국 실리콘밸리 산호세 산타클라라 컨벤션센터에서 열리는 `디자인콘 2023 국제학술대회'에서 열린다.
이들 대학원 학생 4명이 수상하는 최우수 논문상은 반도체 및 패키지 설계 분야에서 국제적으로 권위를 인정받고 있는 디자인콘이 인텔·마이크론·램버스·텍사스인스트루먼트(TI)·AMD·화웨이·IBM·앤시스(ANSYS) 등 글로벌 빅테크 기업의 연구원과 엔지니어, 그리고 세계 각 대학 대학(원)생을 대상으로 매년 7월 말 논문 초안을, 12월 말까지 전체 논문을 각각 모집하고 제출받아 심사를 거쳐 수여하는 학술대회 최고상이다.
이 때문에 발표되는 논문은 실무와 매우 밀접한 관련이 있고 곧바로 제품에 적용이 가능한 실용적인 기술에 관한 내용이 대부분이다.
2022년에는 총 8명의 수상자를 선정했는데 김정호 교수가 지도하는 KAIST 테라 랩에서만 수상자의 절반인 4명을 배출했다. 수상작 가운데 2편은 인공지능을 이용한 반도체 설계, 나머지 2편은 인공지능 컴퓨팅을 위한 반도체 구조 설계에 관한 논문이다.
우선 최우수 논문상 수상자 중 김성국 학생(31세)은 고성능 인공지능 가속기를 위한 고대역폭 메모리 기반 프로세싱-인-메모리(PIM) 아키텍처를 설계했다. 최성욱 학생(27세)은 강화학습 방법론을 활용해 고대역폭(HBM) 메모리를 위한 하이브리드 이퀄라이저를 설계해 주목을 받았다. 신태인 학생(26세)은 차세대 뉴로모픽 컴퓨팅 시스템의 신호 무결성 모델링과 설계 및 분석 방법론을 제안했다.
마지막으로 김혜연 학생은 반도체 설계 문제 중 디커플링 캐패시터 배치 문제를 조합 최적화 문제로 정의하고 오프라인 학습 방법인 모방 학습을 통해 자동 최적화했다. 김혜연 학생은 이번 수상 논문 이외에도 반도체 설계 문제에 지식 증류·데이터 증강·대칭성 학습 등 다양한 인공지능 기법을 적용, 한층 성능이 개선된 결과를 얻어 관련 산업계로부터 많은 주목을 받고 있다.
특히 김혜연 학생의 연구는 기존 인공지능을 적용한 연구에서 한 발 더 나가 반도체 설계 문제의 특징을 고려한 학습 방법과 신경 구조를 직접 설계한 연구로 평가받아 2022년 초 열린 인공지능 분야 최대학회인 뉴립스(NeurIPS) 워크숍에서 발표된 적이 있다.
우리 대학 테라 랩은 2022년 4명의 수상자 외에 지난 2021년에도 김민수 박사과정 학생이 최우수 논문상을 수상했다. 불과 2년 사이에 디자인콘이 주관하는 학술대회의 꽃인 최우수 논문상 수상자를 모두 5명을 배출했는데 5편의 수상자 논문 중 3편이 인공지능을 활용한 반도체 설계에 관한 논문이다.
반도체 설계는 고성능·저전력을 목적으로 미세한 3차원 패키지에 다양한 기능을 갖춘 수많은 부품을 최적화해 배치할 뿐만 아니라 검증을 위해서는 복잡한 시뮬레이션이 필요하기 때문에 매우 어려운 분야로 꼽힌다.
김정호 교수가 이끄는 테라 랩에는 올 1월 현재 석사과정 10명, 박사과정 13명 등 모두 23명의 학생이 반도체 전·후공정에 들어가는 다양한 패키지와 인터커넥션 설계를 강화·모방 학습과 같은 인공지능(AI) 머신러닝(ML)을 활용해 최적화하는 연구를 수행 중이다.
김정호 교수는 "테라 랩은 전 세계 산·학·연구기관 중 유일하게 그간의 연구성과를 기반으로 독창적으로 개발한 반도체 설계 자동화 기술인 5I(CI, PI, TI, EMI, AI) 융합 솔루션을 갖추고 있다ˮ면서 "2030년 이후에는 이종 칩(Chip)을 하나의 패키지로 통합하는 `3D 이종 집적화(Heterogeneous Integration) 패키징' 기술이 대세로 자리를 잡을 것ˮ이라고 전망했다. 김 교수는 이어 "디지털 대전환(DX) 시대를 맞아 반도체의 역할이 갈수록 중요해지는 만큼 차세대 반도체 개발에 필요한 맞춤형 인재 양성을 위해 더욱 노력하겠다ˮ고 소감을 밝혔다.
2023.01.16
조회수 2396
-
근긴장이상증 음악가들에게 희망을
우리 대학 뇌인지과학과 김대수 교수는 지난 11월 19일 세계보건기구 (WHO, the World Health Organization) 후원으로 개최된 ‘근긴장이상증 음악가들을 위한 컨퍼런스’와 근긴장이상증 환자인 주앙 카를로스 마틴의 카네기 홀 공연에 참석하여 근긴장이상증 치료제 소식을 알렸다.
2022년 11월 19일 ‘기적의 콘서트’가 카네기 홀에서 열렸다. 피아니스트 주앙 카를로스 마틴(João Carlos Martins)은 70, 80년대 세계적인 피아니스트로 주목받았으나 갑자기 찾아온 손가락 근긴장이상증으로 음악을 접어야 했다. 2020년 산업 디자이너였던 바타 비자호 코스타(Ubiratã Bizarro Costa)가 개발한 바이오닉 글러브를 끼고 다시 노력한 결과 60년만에 82세의 나이로 카네기홀에 다시 서게 된 것이다.
당일 공연에 그는 NOVUS NY 오케스트라와 협연으로 바하의 음악을 지휘하였으며 이후 직접 피아노로 연주하여 관객들의 감동을 이끌어 냈다. 특히 공연 중간에 김대수 교수를 포함 근긴장이상증 연구를 하는 과학자들의 이름을 호명하는 등 희귀질환 음악가들을 위한 치료제 개발에 힘써 줄 것을 당부하였다.
음악가 근긴장이상증 (Musician's distonia)은 음악가의 1%에서 3%까지 영향을 미치는 것으로 간주되며, 모든 근긴장이상증의 5%를 차지한다. 근긴장이상증으로 연주가 불가능하게 된 음악가들은 스트레스와 우울증에 시달리며 극단적인 선택을 하게 되는 경우도 있다. 음악가들이 근긴장이상증에 취약한 원인으로는 악기연주를 위해 과도한 몰입과 연습, 그리고 완벽주의적 성격, 유전적 요인 등이 알려져 있다. 현재 보튤리넘 톡신 (보톡스)로 이상이 생긴 근육을 억제하는 방법이 쓰이고 있지만 근육기능을 차단하게 되면 결국 악기를 연주할 수 없게 된다. 주앙 카를로스 마틴 자신도 여러 번의 보톡스 시술과 세 번의 뇌수술 등을 받았으나 치료효과가 없었다. 새로운 치료제가 필요한 이유다.
김대수 교수 연구팀은 근긴장이상증이 과도한 스트레스에 의해 유발되는 것에 착안하여 근긴장이상증 치료제 NT-1을 개발하였다. NT-1은 근긴장 증상의 발병을 뇌에서 차단하여 환자들이 근육을 정상적으로 활용할 수 있게 된다. 김대수 교수 연구팀은 근긴장이상증 치료제 개발 연구성과를 2021년 `사이언스 어드밴시스(Science Advances)' 저널에 게재하였으며 이 논문을 보고 주앙 카를로스 마틴은 자신의 공연과 UN 컨퍼런스에 김대수 교수를 초청하였다.
2022년 11월 18일, 카네기홀 공연에 앞서 열린 희귀질환 극복을 위한 UN 컨퍼런스에서 세계보건기구 (WHO) 의 정신건강 및 약물 남용 연구소 책임자인 데보라 케스텔 박사는“근긴장이상증이 잘 알려지지 않았지만 이미 세계적으로 널리 퍼져 있는 질환으로서 사회적인 관심과 연구자들의 헌신을 필요로 한다”면서 컨퍼런스의 취지를 밝혔다. 김대수 교수는 “NT-1은 뇌에서 근긴장이상증 원인을 차단하는 약물로서 음악가들이 악기를 연주하는 것을 방해하지 않을 것이다. 2024년 까지 한국에서 임상허가를 받을 것으로 목표로 한다”고 발표했다.
NT-1 약물은 현재 교원창업기업인 ㈜뉴로토브 (대표, 김대수)에서 개발 중이다. 임상테스트를 위한 약물 합성이 완료되었고 다양한 동물 실험결과 효능과 안전성이 우수하다는 결과를 얻었다. 병원에 가서 시술을 하고 며칠이 지나야 치료효과를 볼 수 있는 보톡스와 달리, NT-1 은 복용한지 1 시간 내에 치료효과를 보인다. 이른바 “먹는 보톡스”로서 다양한 긴장성 근육질환 및 통증에 효능을 보일 것으로 예상된다.
2022.12.27
조회수 3287
-
창업원, 2022 스타트업 페스티벌 개최
우리 대학이 13일부터 이틀간 2022 스타트업 페스티벌을 개최했다. 올해로 9회째를 맞는 이번 행사는 KAIST 창업원의 연간 성과를 공유하고 앞으로의 방향성을 모색하기 위해 마련된 자리다. 행사 첫날인 13일에는 한 해 동안의 창업 성과를 소개하는 행사들로 꾸려졌다. 오전에는 교원창업 워크숍을 열어 창업원 초빙교수인 최호숙 변호사가 창업을 시작하는 기업의 주요 법률상담 사례를 공유했다. 이와 함께, 창업을 희망하는 교원들을 위한 기술 실시 계약서 작성 요령을 알아보고 창업에 앞서 개인별 역량과 준비 상태를 점검하고 초기 창업자가 직면하는 위험에 대처할 수 있도록 돕는 '창업역량 자가 진단 프로그램 개발' 내용 발표도 이어졌다. 오후에는 2022년을 대표하는 KAIST의 창업기업과 '룬샷(Loonshots)' 프로그램을 통한 학생창업 성과를 소개하는 시간이 마련됐다. 올해는 ▴나니아랩스(제조 분야 인공지능 솔루션) ▴임팩트 AI(인공지능·빅데이터 솔루션) ▴Plume.D(3D 아바타 렌더링 솔루션) ▴심투리얼(디지털 트윈 가상환경 서비스) ▴셀리아즈(망막질환 치료제 개발) ▴스파이더코어(인공지능 기반 RNA 치료제 개발) ▴트루밸류(진로 교육 솔루션 서비스) 등 7개 기업이 창업 지원 프로그램의 기업 소개 대상으로 선정됐다.이 중, 나니아랩스는 조천식모빌리티 대학원 강남우 교수가 대기업 수요 기반 매칭 프로그램(KAIST Entrepreneurial Partnership, 이하 KEP)을 통해 올해 4월 창업한 기업이다. 엔지니어링 설계에 필요한 데이터를 자동으로 생성·평가·최적화 추천하는 통합 제조 플랫폼을 이용해 제품 개발에 필요한 시간과 비용을 획기적으로 단축하는 서비스를 제공하고 있다. 또한, 인간 개발자가 아닌 인공지능이 프로그램 코드를 스스로 설계하는 '노코드 서비스형 소프트웨어(No-code AI SaaS)'도 함께 제공한다.
이런 기술력을 바탕으로 창업 4개월 만에 현대자동차그룹(제로원)으로부터 투자를 받았으며, 지난 10월 열린 그린비즈니스위크 2022 K-테크 스타트업 왕중왕전에서 교원 부분 대상을 차지했다. 현재, 현대자동차, 현대모비스와 LG전자 등이 나니아랩스의 기술을 개발에 활용하고 있다. 또한, 학생창업 기업으로는 KAIST가 올해 새로 도입한 '룬샷 스타트 챌린지'에 선정된 ▴Plan IT(블록체인 기반 AI 아트 크리에이터 플랫폼) ▴Kiddle(작업전시 및 판매공간) ▴Bookend(클라우드& 인공지능 도서편집기 기반 출판사)가 소개된다. '룬샷' 은 창업 이전 단계의 참신한 아이디어를 가진 학생들을 대상으로 아이디어를 검증할 비용 및 창업 코칭을 지원하는 창업지원 프로그램이다. 우리 대학은 올해 17개의 교원창업 기업을 배출해 투자 유치는 물론 매출 및 고용 창출 등 실질적인 성과를 창출하고 있다. 또한, 6개 학생창업 기업과 44개 예비 학생창업팀을 지원하고 있다. 행사 둘째 날에는 대전지역 창업생태계 활성화를 위해 노력하는 KAIST 동문 기업 CEO, 벤처캐피털, 창업기획사, 창업기업가 등이 참석하는 토크 콘서트와 세미나 등이 열렸다. 산·학·연 관계자들이 한자리에 모여 스타트업의 주요 현안과 지속 가능한 발전을 위한 방향성을 논의했다.
또한, 부대행사로 창업기업 제품 전시 체험 부스가 열린다. 남주한 문화기술 대학원 교수의 창업기업인 뉴튠(Neutune)은 사용자가 아티스트의 음악을 자유롭게 조합하여 소장하고 공유할 수 있는 '믹스 오디오' 서비스를 선보였다. 이와 함께, 토브데이터(TOVDATA)의 기업의 개인정보 관리 서비스 프로그램인 '플립(Plip)'과 인공지능 솔루션을 기반으로 가상 얼굴을 제작해 저작권과 초상권에서 자유로운 마케팅 솔루션을 제공하는 플립션(Fliption)의 서비스도 체험 기회도 현장에서 제공됐다.
김영태 KAIST 창업원장은 "올 한해는 '1랩 1창업'이란 비전 아래 다방면의 창업 지원 정책을 추진한 결과 교원창업이 특히 활성화된 한 해였다"라고 말했다. 이어, 김 원장은 "KAIST 스타트업 페스티벌은 창업 기업들의 성과를 돌아보고 서로 격려하며, 경제 침체의 위기 속에서 스타트업의 생존과 성장을 위한 지원방안을 모색하는 화합과 협력의 장으로 열렸다"라고 전했다.이번 행사는 우리 대학 대전 본원의 창업원 K-Space와 KI빌딩 퓨전홀 등에서 현장 진행되고 온라인(zoom)에서도 중계됐다.
2022.12.14
조회수 1800
-
KAIST, 세계적 권위의 AI 학회에서 연구 역량 입증
우리 대학 연구진이 인공지능 분야에서 세계 최고의 권위를 자랑하는 신경정보처리시스템학회(이하, NeurIPS)에서 왕성한 연구 역량과 위상을 입증했다. NeurIPS는 산업계와 학계에서 최신 인공지능 연구를 발표하는 권위 있는 국제학회다. 우리 대학은 2020년에 20편, 2021년에 45편의 논문을 발표했고, 올해도 작년 수준과 비슷한 37편을 게재해 인공지능 분야에서의 왕성한 연구 능력을 학계에 선보였다. 특히, 예종철 김재철AI대학원 교수의 논문(Energy-Based Contrastive Learning of Visual Representations)이 상위 6%만을 선정하는 구두 발표 논문으로 선정되어 질적으로도 우수한 연구 수준을 인정받았다. 이뿐만이 아니라 지난달 28일부터 미국 루이지애나주 뉴올리언스에서 열린 NeurIPS 2022 학회에서 우리 대학 교수진과 동문이 눈에 띄게 활약했다. 오혜연 전산학부 교수(KAIST 인공지능연구원 부원장)와 조경현 동문(KAIST 전산학부 학사 졸업)은 학술위원장 (Program chair)을, 안성진 전산학부 교수는 워크숍위원장(Workshop chair)을 맡았다. 김주호 전산학부 교수는 기조 강연자로 초청되어 ‘인터렉션 센트릭 AI(Interaction-Centric AI)’를 주제로 발표했다. 오혜연 교수는 “다수의 KAIST 연구진이 국제학회 조직위원 및 기조 강연자로 선정되었다는 것은 인공지능 연구 분야에서 KAIST의 위상이 세계적으로 높아졌음을 시사한다”라고 설명했다.
2022.12.11
조회수 2128
-
돼지표피에서 추출한 젤라틴 활용해 고성능 고체산화물 연료전지 개발
우리 대학 기계공학과 이강택 교수 연구팀이 돼지 표피에서 추출한 젤라틴을 활용해 수백 나노 수준의 매우 얇은 고 치밀성 다중도핑 세라믹 박막 제조 기술을 적용한 고성능의 양방향 고체산화물 연료전지 개발에 성공했다고 8일 밝혔다.
양방향 고체산화물 연료전지(R-SOFC)는 하나의 연료전지 소자에서 수소 생산과 전력생산이 모두 가능한 시스템으로서 탄소중립 사회 실현을 위해 필수적인 에너지 변환장치다.
이러한 에너지 소자의 성능을 높이기 위해서는 700oC 이하의 중저온에서 고활성을 갖는 전극의 개발이 필수적이며, 이를 위해 코발트 기반 페로브스카이트 전극이 집중적으로 연구돼왔다. 하지만 이러한 코발트 기반 전극 소재는 범용으로 사용되는 지르코니아(ZrO2) 전해질과 고온에서 화학반응을 일으켜 성능을 저하하는 문제가 있다. 이를 해결하기 위해 전극과 전해질 사이에 세리아(CeO2) 기능층을 도입하는 연구가 진행돼왔지만, 세리아와 지르코니아 사이의 반응을 억제하기 위해서 공정온도가 제한되며 이로 인해 두꺼운 다공성 구조를 갖게 되어 연료전지의 성능 및 안정성이 저하된다는 문제가 있었다.
이 교수 연구팀은 이 연구에서 젤라틴을 활용해 매우 얇으면서도 치밀한 다중도핑의 세리아 나노박막 제조 공정기술을 개발해 양방향 고체산화물연료전지에 기능층으로 적용하는 데 성공했다. 전기화학 및 구조 분석을 통해 치밀한 기능층의 도입으로 산소이온의 이동경로가 크게 감소하며 전기화학적 활성영역이 크게 증가함을 확인했다. 또한 개발된 양방향 연료전지는 기존 공정을 적용한 연료전지 대비 2배 이상 높은 성능을 보였으며 동일소재를 사용한 연료전지 중 가장 높은 성능(3.5 W/cm2, 750oC) 을 나타냈으며, 수소 생산도 세계 최고성능을 발휘했다. 또한, 개발된 연료전지 소자는 1,500시간 동안 열화 없이 구동돼 매우 높은 안정성을 갖고 있음을 실증했다.
이강택 교수는 "이번 연구에서 사용된 공정들은 대면적 양산시스템에도 쉽게 적용할 수 있는 기술들이기 때문에, 탄소중립 실현을 위한 고성능 양방향 연료전지 상용화에 본 기술을 적용할 수 있을 것ˮ이라며 연구의 의미를 강조했다.
기계공학과 유형민 석사과정, 임하니 박사후연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지인 `어드벤스드 펑셔널 머티리얼스, Advanced Functional Materials' (IF : 19.924) 지난 9월 8일 字 온라인판에 게재됐다. (논문명 : Exceptionally High-performance Reversible Solid Oxide Electrochemical Cells with Ultra-thin and Defect-free Sm0.075Nd0.075Ce0.85O2-���� Interlayers). 또한 해당 논문은 연구의 파급력을 인정받아 표지논문 (Front cover)으로 선정됐다.
한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업, 중견연구자지원사업, 나노 및 소재 기술개발사업, 그리고 기후변화대응기술개발사업의 지원으로 수행됐다.
2022.12.08
조회수 2737