-
3차원 신개념 스트레쳐블 OLED 개발
우리 연구진이 골프공의 표면처럼 반복적으로 파여 있는 구조를 도입해 실제 닿는 유효 면적을 줄임으로써 면과 면 사이의 점착력을 현저히 줄인다는 아이디어로, 잡아당겨도 성능을 유지하는 신개념 스트레처블 디스플레이를 개발해 화제다.
우리 대학 전기및전자공학부 유승협 교수 연구팀이 동아대 문한얼 교수, 한국전자통신연구원(ETRI) 실감소자 연구본부와의 협력을 통해 세계 최고 수준의 높은 초기 발광 면적비와 고신축성을 동시에 갖는 유기발광다이오드(organic light-emitting diode, OLED) 디스플레이를 구현하는 데 성공했다고 10일 밝혔다.
기존의 신축형 디스플레이에서는 성능과 신축성을 동시에 확보하기 위해, 발광하는 부분은 단단한 고립구조(rigid island)에 위치해 신축 시에도 기계적 변형 없이 우수한 성능을 보이도록 하고, 이들을 연결하는 커넥터 부분은 말굽 모양 등의 구부러진 형태로 구성해 신축에 따라 용이하게 변형할 수 있게 한다. 통상적으로 이들 구조는 이차원 평면상에 한정되는데, 이 경우 구부러진 연결 커넥터에 필요한 공간 확보를 위해 전체 면적대비 발광 면적의 비율을 불가피하게 희생해야 하는 한계점이 있다.
공동 연구팀은 2차원 평면에 국한하지 않고 구부림 연결 커넥터가 힌지(경첩)형 회전과 인장을 동시에 활용할 수 있는 3차원 높이 교차 구조를 제안, 잡아당기지 않은 초기 상태에서 85%의 발광 면적비와 40%의 최대 시스템 신축률을 동시에 갖는 OLED 디스플레이 기술을 달성했다.
이와 동등한 수준의 신축형 디스플레이를 2차원에 한정된 구부림 연결 커넥터를 통해 구현할 경우, 약 500% 인장이 가능한 연결 커넥터가 있어야 가능할 정도의 우수한 결과다. 연구팀은 또한, 반복적인 동작과 곡면 변형에서도 안정적으로 성능을 유지하는 결과를 확인했다.
처음 시도되는 개념이다 보니 연구 개발이 처음부터 순조롭지는 않았다. 특히, 초박막 OLED가 신축 변화 시 높이를 변화할 때 극복해야 할 OLED 기판과 신축성 플랫폼 사이의 점착력이 생각보다 커, 팝업돼야 할 초박막 OLED가 설계대로 부양되지 못하고 무질서하게 바닥에 붙는 난관에 부딪혔다.
고민을 거듭하던 유승협 교수와 김수본 박사는, 마치 골프공의 표면처럼 반복적으로 파여 있는 구조를 도입해 실제 닿는 유효 면적을 줄임으로써 면과 면 사이의 점착력을 현저히 줄이는 아이디어를 제시, 실험적으로 구현했고 이를 적용해 설계한 대로 완벽하게 동작하는 신축형 디스플레이를 구현하는 데 성공했다.
유승협 교수는 “높은 발광 면적비 및 우수한 신축률을 동시에 가능하게 하는 신축 유기발광 다이오드 기술의 확보는 신축형 디스플레이 기술의 난제를 해결하는 중요한 열쇠”라고 밝히며, "아이디어 입안에서부터 이의 성공적 구현을 위한 기계적 설계, 산업적 호환성이 큰 소재 및 소자구조의 활용, 반복성이 우수한 안정적 공정 수립에 이르기까지 김수본 박사(개발 당시 박사과정 학생, 24년 2월 박사 졸업)의 체계적이고 집념 어린 연구 수행, 그리고 ETRI와 동아대와의 협력이 큰 역할을 했다”고 말했다.
유승협 교수 연구실의 김수본 박사가 제1 저자로 수행한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 2024년 9월 6일 자 게재됐다.
(논문명: 3D height-alternant island arrays for stretchable OLEDs with high active area ratio and maximum strain, Nature Comm. 15, 7802 (2024). 논문링크: https://www.nature.com/articles/s41467-024-52046-6).
한편 이번 연구는 한국연구재단 선도연구센터 사업(인체부착형 빛 치료 공학연구센터) 및 중견연구자사업, 그리고 한국전자통신연구원 연구운영비지원사업(ICT 소재·부품·장비 자립 및 도전 기술 개발)의 지원을 받아 수행됐다.
2024.09.10
조회수 300
-
지방간 치료제 개발에 최적화된 동물모델 개발
대사이상 지방간 질환은 전 세계 인구의 30%, 비만하지 않은 인구의 19%가 앓고 있으며, 지방간에서 시작해 간암까지 진행되는 심각한 만성질환이다. 현재 FDA에서 승인된 치료제인 레스메티롬(Resmetirom)이 있지만, 치료받은 환자의 70% 이상에서 충분한 효과를 보지 못해 새로운 치료제 개발이 시급하다. 한국 연구진이 지방간염 치료제 개발에 중요한 전환점이 될 사람의 대사이상 지방간 질환을 잘 모사하는 새로운 동물모델을 개발해 주목받고 있다.
우리 대학 의과학대학원 김하일 교수 연구팀과 연세대학교 의과대학 박준용 교수 연구팀, 한미약품 R&D센터(최인영 R&D센터장/전무이사) 및 ㈜제이디바이오사이언스(대표 안진희)와 공동연구를 통해 새로운 대사이상 지방간 질환 동물모델을 개발했다고 19일 밝혔다.
대사이상 지방간 질환의 유병률은 20~30%에 이르고, 지방간염 질환은 전 세계 성인 인구의 5% 이상이 보유하고 있을 정도로 높은 유병률을 보임에도 불구하고 현재까지 제품화된 치료제가 전혀 없다.
대사이상 지방간 질환은 지방간에서 시작해 지방간염, 섬유화, 간경화, 간암으로 진행되는 만성질환이며, 심혈관질환 및 간 관련 합병증 등에 의해 사망률이 증가하므로 발병 초기에 적절한 치료가 필요하다.
하지만 아직까지 사람의 질환을 모사할 수 있는 적절한 동물모델이 없어 병인 기전의 규명과 치료제의 개발에 어려움이 있다. 특히 기존의 동물모델들은 당뇨와 비만과 같은 대사이상이 간경화와 간암의 발병에 유발하는지를 반영하지 못한다는 문제점이 있었다.
김하일 교수 연구팀은 베타세포의 기능이 부족한 아시아인에서 비만과 당뇨병을 동반한 대사이상 지방간 질환의 유병률이 더 높다는 점에 착안했다. 마우스에 약물을 통해 베타세포를 파괴해 당뇨를 유발한 다음 고지방식이를 먹여서 비만과 당뇨를 동반한 지방간 질환이 빠르게 진행하는 동물모델을 개발했다.
이 마우스 모델은 1년 동안 점진적으로 지방간, 지방간염, 간 *섬유화 및 간암이 나타나는데, 해당 마우스의 간의 유전체를 분석한 결과 그 특징이 비만과 제2형 당뇨병을 동반한 대사이상 지방간 질환 환자들과 매우 유사한 것으로 나타났다. 특히 이 모델에서 발생하는 간암은 대사이상 지방간 질환 환자에서 발생하는 간암과 조직학적, 분자생물학적 특성이 유사한 것을 연구팀은 확인했다.
* 섬유화: 간의 일부가 굳는 현상으로, 지방간염 개선의 주요 지표로 쓰임
연구팀은 개발한 동물모델을 사용해, 최근 비만치료효과로 각광을 받고 있는 GLP-1 유사체의 효과를 시험했다. GLP-1 유사체의 투여가 이 마우스 모델에서 지방간, 간염과 간 섬유화의 진행을 억제하는 효과를 확인해, 마우스 모델이 신약 개발을 위한 전임상 모델로 유용하게 활용될 수 있음을 연구팀은 보였다. 또한 GLP-1 유사체의 투여가 간암의 발생을 억제함을 최초로 규명해, 대사이상 지방간 질환의 주요 사망 요인인 간암의 발병 억제를 위한 GLP-1 유사체의 활용 방안을 제시했다.
의과학대학원 김하일 교수는 “현재 대사이상 지방간 질환 동물모델은 대사이상 지방간 질환의 넓은 스펙트럼과 당뇨, 비만과 같은 대사질환을 잘 반영하지 못하는 문제점이 있으나, 우리 연구팀이 개발한 마우스 모델은 만성 대사질환의 특징을 잘 모사해, 대사이상 지방간 질환 동물모델로서 관련 연구에 중요한 전환점을 제시할 수 있을 것이다”고 강조했다.
우리 대학 의과학대학원 정병관 박사, 최원일 교수, 화순전남대학교병원 최원석 교수가 공동 제1 저자로 참여한 이번 연구 논문은 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 에 2024년 8월 2일 게재됐다.
(논문명: A male mouse model for metabolic dysfunction-associated steatotic liver disease and hepatocellular carcinoma)
한편 이번 연구는 과학기술정보통신부, 보건복지부, 교육부, 및 ㈜제이디바이오사이언스(JD Bioscience Inc.)에서 지원을 받아 수행됐다.
2024.08.19
조회수 899
-
피부 모니터링부터 뇌심부 해석까지 쉽게 가능
실시간으로 심박수를 측정할 수 있는 스마트 워치, 심장 박동수를 조절하는 페이스메이커 등 생체신호를 지속적으로 측정해 다양한 병을 진단하거나 치료할 수 있는 전자소자인 생체전자소자에 관한 연구가 활발히 진행되고 있다. KAIST 연구진이 생체조직 접촉 시 손상을 최소화하고 3D 마이크로니들 구조로 조직표면부터 심부까지 측정할 수 있는 전도성 하이드로젤 소재를 개발해 화제다.
우리 대학 신소재공학과 스티브 박 교수, 바이오및뇌공학과 박성준 교수 공동연구팀이 3D 프린팅을 통해 다양한 형태의 생체전자소자를 쉽고 빠르게 제작할 수 있는 전도성 고분자 기반 전극 물질을 개발했다고 7일 밝혔다.
이번 연구를 통해 기존 2D 전극 패터닝 기술로 접근하기 어려웠던 한계점을 극복해, 원하는 위치 및 심부 영역의 뇌 신경세포를 자극 및 측정할 수 있어, 뇌의 심부 영역에서 뇌의 활성화 원리를 정확하게 해석할 수 있을 것으로 기대된다. 또한 3D 프린팅을 통해 이 기술은 피부에 부착하는 헬스케어 모니터링 소자부터 생체 삽입형 소자에 이르기까지 광범위하게 활용할 수 있을 것으로 기대된다.
기존 생체전자소자에 사용됐던 금속 물질은 단단한 물성으로 인해 연약한 생체조직에 상처를 입힐 수 있다는 문제점이 있었다. 또한, 이 문제를 보완하기 위해 개발됐던 전도성 하이드로젤 소재는 낮은 전기전도성을 가지고, 생체적합성을 개선하기 위해 소자 제작 후 24시간 이상의 독성 제거 공정을 진행해야 한다는 문제점이 있었다. 또한, 2D 구조의 전극 패터닝만 가능하다는 한계점 때문에 다양한 형태의 소자를 제작하기 어려웠다.
박 교수 연구팀은 전도성 고분자를 나노미터 크기의 콜로이드 형태로 가공해 유화 작용을 유도함으로써 잉크의 유변학적 특징*을 개선하고, 생체적합성에 악영향을 미치는 독성 물질을 원심분리 공정을 통해 제거함으로써 3D 프린팅이 가능하면서 후처리 공정이 필요 없는 고전도성 하이드로젤 잉크를 개발했다.
*유변학적 특성: 잉크의 유동성과 그에 따른 변형, 그 응답인 응력 등의 특성을 말하며 특성이 높을수록 잉크의 압출 직후 인쇄된 형태를 유지할 수 있으며, 낮으면 압출 직후 인쇄된 형태를 유지하기 어렵다.
이 재료는 선행연구 대비 약 1.5배(286 S/cm)의 전기전도도를 가지며, 고해상도 패터닝(~50μm), 전방위 3D 전극 패터닝이 가능하다는 장점을 가진다. 또한 생체조직과 비슷한 물성(영 계수 750kPa)를 가져, 생체조직과의 접촉 시 손상을 최소화할 수 있다.
연구팀은 개발한 신소재 전극을 기반으로 심전도 측정(ECG) 및 근전도 측정(EMG) 측정 타투, 뇌 피질전도도(ECoG) 측정소자, 3D 뇌 탐침 측정 소자를 개발해 기능성을 검증했다. 또한 높은 전하 저장 능력을 활용, 낮은 전압(60mV)으로 쥐의 좌골 신경을 자극하는 소자를 개발해 생체 자극 소자로서의 성능을 확인했다. 더불어 복잡한 3D 회로를 필요한 적용 분야에 맞추어 제작할 수 있고 3D 마이크로니들 구조로 전극을 패터닝해 조직 표면에 있는 생체신호뿐만 아니라 조직 심부에 있는 뉴럴 인터페이스의 제작이 가능해졌다.
연구를 주도한 스티브 박 교수는 "기존 3D 프린팅 기술을 이용해 제작되는 전자소자의 경우 전도성 및 생체적합성을 개선하기 위해 장시간 및 복잡한 형태의 후처리가 필요해 래피드 프로토타이핑(Rapid prototyping)을 장점으로 가져갈 수 있는 3D 프린팅 기술의 모든 장점을 이용할 수 없었다”며, “이번 연구에서는 이러한 단점을 해결해 향후 환자 맞춤형 바이오 전자소자 및 다양한 3D 회로 응용 분야에 활용될 수 있을 것으로 기대된다ˮ라고 말했다.
신소재공학과 오병국 박사과정과 백승혁 석사, 바이오및뇌공학과 남금석 석박사통합과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 7월 11일 게재됐다. (논문명 : 3D printable and biocompatible PEDOT:PSS-ionic liquid colloids with high conductivity for rapid on-demand fabrication of 3D bioelectronics)
이번 연구는 한국연구재단 나노 및 소재기술개발사업, 중견 사업 및 ETRI의 지원을 받아 수행됐다.
2024.08.07
조회수 1404
-
챗MOF로 96.9% 금속 유기 골격체 물성 예측하다
우리 대학 연구진이 챗GPT를 활용해 큰 다공성, 높은 표면적, 그리고 뛰어난 조절 가능성으로 많은 화학 응용 분야에서 사용되는 금속 유기 골격체의 특성을 예측하고 새로운 재료를 자동으로 생성하는 챗봇 시스템(이하 챗MOF)을 개발했다. 챗MOF는 검색 및 예측 작업에서 각각 96.9% 및 95.7%의 높은 성공률을 보여 화제다.
생명화학공학과 김지한 교수 연구팀이 인공지능(AI)의 급격한 발전에 주목하며, 대규모 언어 모델(이하 LLMs) 활용을 통해 금속 유기 골격체(Metal-Organic Frameworks, MOFs)의 특성을 예측하고 새로운 재료를 자동으로 생성하는 챗봇 시스템(ChatMOF)을 개발했다고 26일 발표했다.
최근 인공지능(AI)의 발전에는 큰 도약이 있었지만 재료 과학에서의 LLM의 잠재력을 완전히 실현하기에는 여전히 물질의 복잡성과 재료별 특화된 훈련 데이터의 부족이라는 한계점이 존재했다.
김지한 교수 연구팀이 개발한 챗MOF는 재료 분야에서 전통적인 머신러닝 모델과 LLM을 결합한 혁신적인 접근 방식으로 계산 및 머신러닝 도구에 대한 초보자들과의 격차를 상당히 줄일 수 있는 잠재력을 가지고 있다.
또한 이 독특한 시스템은 인공지능의 변혁적인 능력과 재료 과학의 복잡한 측면들을 연결하며, 다양한 작업에서 뛰어난 성능을 보여준다. 챗MOF는 검색 및 예측 작업에서 각각 96.9% 및 95.7%의 높은 성공률을 보고한다. 한편, 더 복잡한 구조 생성 작업은 그 복잡함에도 불구하고 주목할 만한 87.5%의 정확도를 달성한다. 이러한 유망한 결과는 챗MOF가 가장 요구가 많은 작업을 관리하는 데도 효과적임을 강조한다.
김지한 교수는 “연구팀이 개발한 기술은 재료 과학 분야에서 인공지능의 더 높은 자율성을 달성하기 위한 중요한 진전을 나타낸다. 기술이 발전함에 따라, 모델 용량과 온라인 플랫폼에서의 데이터 공유에 대한 체계적인 개선을 통해 챗MOF의 성능을 더욱 최적화할 수 있으며, 이는 금속 유기 골격체 연구 분야에서 놀라운 진전을 촉진할 수 있다.”라고 말했다.
생명화학공학과 강영훈 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature communications)'에 지난 6월 3일 게재됐다. (논문명: ChatMOF: An Artificial Intelligence System for Predicting and Generating Metal-Organic Frameworks Using Large Language Models)
한편 이번 연구는 과학기술정보통신부의 지원으로 국가 소재 연구 데이터 사업단, 그리고 한국연구재단 (NRF) 중견 연구자 지원 사업의 지원을 받아 수행됐다.
2024.06.26
조회수 1969
-
잡아당겨도 고화질 유지하는 디스플레이 개발
평면에 국한됐던 디스플레이 기술이 곡면형 모니터나 폴더블 휴대폰 화면처럼 다양한 형태로 진화되고 있는데, 이보다 더 나아가 잡아당겨도 동작 가능한 신축형 디스플레이의 핵심 기술이 개발되어 화제다.
우리 대학 전기및전자공학부 유승협 교수 연구팀이 동아대 문한얼 교수, 한국전자통신연구원(ETRI) 실감소자 연구본부와의 협력을 통해 세계 최고 수준의 높은 발광면적비를 가지며 신축 시에도 해상도가 거의 줄지 않는 신축 유기발광다이오드(organic light-emitting diode, OLED) 디스플레이를 구현하는 데 성공했다고 11일 밝혔다.
공동연구팀은 유연성이 매우 뛰어난 초박막 OLED를 개발하여 이의 일부 발광 면적을 인접한 두 고립 영역 사이로 숨겨 넣는 방법으로, 신축성과 높은 발광 밀도를 동시에 확보하는 데 성공했다. 이렇게 숨겨진 발광 영역은 신축 시 그 모습을 점차 드러내며 발광 면적비의 감소를 보상하는 메커니즘을 가능케 했다.
기존의 신축형 디스플레이는 고정된 단단한 발광 부분을 이용하여 성능을 확보하면서, 굽혀진 모양의 연결부를 통해 신축성을 확보하는 경우가 일반적이다. 그런데 이 경우 빛을 내지 않는 굽힘 모양 연결부로 인해, 전체 면적에서 발광면적이 차지하는 비율이 낮은 한계점이 있다. 특히, 신축시에는 늘어난 굽힘 모양 연결부가 차지하는 면적이 더욱 커지면서 발광면적 비율이 한층 더 감소하는 문제가 있다.
공동연구팀은 제안된 구조체를 통해 신축 전 발광면적비가 100%에 근접하는 최고 수준을 달성했으며, 30%의 시스템 신축 후 발광면적비 또한 단지 10% 감소하는 플랫폼을 구현했다. 이는 같은 변형하에서 기존 플랫폼이 60% 수준의 높은 발광면적비 감소를 보이는 것과 대조적인 결과다. 또한 본 플랫폼은 반복 동작 및 다양한 외력 하에서도, 강건하게 동작하는 기계적 안정성을 보였다.
공동연구팀은 구형 물체, 실린더, 인체 부위와 같은 곡면에서 안정적으로 동작해, 풍선의 팽창이나 관절의 움직임 등을 수용할 수 있는 웨어러블 및 자유곡면에 부착할 수 있는 광원에 대한 응용성을 확인했으며, 숨겨진 발광영역의 독립적 구동을 통해 신축 시 저감되는 해상도 보상이 가능한 미래 디스플레이의 가능성을 확인하였다.
유승협 교수는 “이미 우리는 폴더블 휴대폰이나 곡면형 모니터 같이 더 이상 평면이 아닌 디스플레이를 쉽게 볼 수 있는 시대에 살고 있는데, 미래에는 디스플레이의 형태가 더욱 다양해지면서 궁극적으로 늘려도 동작하는 신축형 디스플레이 기술로 확장될 것으로 기대된다”면서 “이번에 개발된 기술은, 우수한 성능과 안정성이 확보된 OLED 기술을 그대로 활용하면서도 기존 신축형 디스플레이의 난제를 극복하는 방법을 제시한 것으로서, 신축형 디스플레이의 제품화를 더욱 가속화하는 계기가 되기를 희망한다”고 말했다.
유승협 교수 연구실의 이동균 박사(現 서울대학교 연수연구원)가 제1 저자로 수행한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 2024년 6월 5일자 게재됐으며 (논문명: Stretchable OLEDs based on a hidden active area for high fill factor and resolution compensation, DOI:: 10.1038/s41467-024-48396-w), 미국의 전기전자기술자협회 (Institute of Electrical and Electronics Engineers, IEEE)의 매거진인 ‘IEEE Spectrum’에 의해 온라인 뉴스로 소개되기도 하였다.
이번 연구는 한국연구재단 선도연구센터 사업(인체부착형 빛 치료 공학연구센터) 및 한국전자통신연구원 연구운영비지원사업(ICT 소재·부품·장비 자립 및 도전 기술 개발)의 지원을 받아 수행됐다.
2024.06.11
조회수 2247
-
강유전체 ‘3차원 소용돌이’ 20년 난제 풀어
약 20년 전 아주 작은 나노 크기 0차원 강유전체 내부에 특이한 형태의 분극 분포가 발생할 수 있음이 로랑 벨라이쉬(Laurent Bellaiche) 교수(現 미국 아칸소대 물리학과 교수) 연구진에 의해 이론적으로 예측됐다. 해당 소용돌이 분포를 적절히 제어하면 기존에 비해 10,000배 이상 높은 용량의 초고밀도 메모리 소자로 응용이 가능할 것이라는 가능성이 제시돼 학계의 이목을 끌었으나, 3차원 분극 분포 측정의 어려움으로 인해 실험적인 규명이 되지 못하고 있었다.
우리 대학 물리학과 양용수 교수 연구팀이 포항공과대학교, 서울대학교, 한국기초과학지원연구원과의 공동연구 및 미국 로런스 버클리 국립연구소, 아칸소대학교 연구진과의 국제협력 연구를 통해 나노강유전체 내부의 3차원 소용돌이 형태 분극 분포를 최초로 실험적으로 규명하였다고 30일 밝혔다.
영구자석과 같이 외부의 자기장이 없어도 자화 상태를 스스로 유지할 수 있는 물질들을 강자성체(ferromagnet)라 하고, 강유전체(ferroelectric)는 외부의 전기장 없어도 분극상태를 유지할 수 있는 물질로서 강자성체의 전기(electric) 버전이라고 생각하면 된다. 강자성체(자석)의 경우 나노 크기로 너무 작게 만들면 일정 이하 크기에서는 자석으로서의 성질을 잃어버린다는 것이 잘 알려져 있는 반면, 강유전체를 모든 방향에서 아주 작게 나노 크기로 만들면(즉 0차원 구조를 만들면) 어떤 현상이 발생하는지는 오랜 기간 논란거리였다.
인체 내부 장기들을 3차원적으로 보기 위해 병원에서 CT 촬영을 하는 것과 동일한 방식으로, 양용수 교수 연구팀은 전자현미경을 이용해 다양한 각도에서 투과전자현미경 이미지를 획득하고, 이를 고급화된 재구성 알고리즘을 통해 3차원으로 재구성하는 방식으로 원자 분해능 전자토모그래피 기술을 개발 및 응용하였다.
이를 통해 연구팀은 강유전체인 바륨-티타늄 산화물(BaTiO3) 나노입자 내부 원자들의 위치를 3차원적으로 완전히 측정하고, 내부의 3차원적 분극 분포 또한 단일 원자 단위로 규명했다. 분극 분포 분석 결과, 20년 전에 이론적으로 예측됐던 대로 강유전체 내부에 소용돌이를 비롯한 다양한 위상학적 분극 분포가 발생하고, 강유전체의 크기에 따라 내부 소용돌이의 개수 또한 제어할 수 있다는 사실을 연구팀은 최초로 실험적으로 밝힐 수 있었다.
연구팀은 이 결과를 바탕으로 20년 전 해당 소용돌이 분극 이론을 최초 제시했던 벨라이쉬(Bellaiche) 교수와 국제공동연구를 수행했고, 실험에서 얻은 소용돌이 분포 결과가 이론적인 계산으로도 잘 설명됨을 추가적으로 증명했다.
연구를 주도한 양용수 교수는 "이번 결과는 기판의 유/무나 주변 환경에 무관하게 강유전체 크기와 형태를 적절히 조절하는 것만으로도 나노 크기에서 강유전성 소용돌이를 제어할 수 있음을 시사하였다. 아울러, 이러한 분극 분포 소용돌이의 개수 및 회전 방향을 조절함으로써 기존보다 약 10,000배 이상 많은 양의 정보를 같은 크기의 소자에 저장할 수 있는 차세대 고밀도 메모리 소자 기술로 발전시킬 수 있을 것으로 기대한다” 라고 말했다.
물리학과 정채화 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 에 지난 5월 8일 字 게재됐다. (논문명 : Revealing the Three-Dimensional Arrangement of Polar Topology in Nanoparticles).
한편 이번 연구는 한국연구재단 개인기초연구지원사업 및 KAIST 특이점교수사업의 지원을 받아 수행됐다.
2024.05.30
조회수 2162
-
세계 최대 규모 암 데이터베이스 구축하다
디지털 암 정보 축적의 시대에는 데이터 생산을 넘어서, 데이터의 수집 및 관리 방법을 정립하고 거대 규모의 빅 데이터를 운용하는 것이 가장 큰 경쟁력이 될 수 있다. 전략적으로는 정밀 임상 정보와 연계할 수 있는 국내 생산 데이터와 다양성에 대한 이해를 도모할 수 있는 대규모 국제 데이터를 모두 수집해 통합하는 것은 매우 중요한 과제다.
우리 대학 의과학대학원 박종은 교수, 바이오및뇌공학과 최정균 교수 공동 연구팀(제1 저자: 강준호 박사, 이준형 박사)이 세계 최대 규모의 암 조직 단일세포 및 공간전사체* 데이터베이스를 구성하고, 이를 바탕으로 삼성서울병원 이세훈 교수 연구팀과 함께 면역 치료의 예후 예측에 중요한 세포 생태계 타입을 보고했다고 22일 밝혔다.
*단일세포 및 공간전사체: 모든 유전자의 발현 양상을 개별 세포 단위에서 혹은 3차원 조직 구조상에서 분석한 데이터
암은 우리 몸 안에서 스스로 진화하는 특성을 가지고 있어 암 조직 내의 세포 생태계를 구성하는 각 세포의 이질성과 이들의 상호작용을 파악하는 것이 가장 중요하다.
최근 발달하고 있는 단일세포 및 공간 전사체는 미세환경을 구성하는 세포들과 그들의 3차원적 배열 및 상호작용을 정량적으로 측정 및 표현한다는 점에서 미세환경의 이질성 개념을 생태계 수준으로 확장해 디지털 정보의 형태로 저장 및 분석할 수 있게 한다.
연구팀은 암세포 생태계 타입들을 전 암종(pan-cancer) 수준에서 규명하기 위해 약 1,000개의 암 환자 조직 샘플, 500여 명의 정상 조직 샘플에 대한 단일세포 전사체 데이터를 30종 이상의 암종에 대해 수집하여 모든 암에 대한 세포 지도가 총망라된 전 암종 단일세포 지도(pan-cancer single-cell atlas)를 구축했다.
내과 전문의가 포함된 연구진이 직접 데이터를 수집하고, 메타데이터 재처리 및 암종 분류를 진행함으로써 암 조직을 구성하는 100여 개의 세포 상태를 규정하고, 이들의 발생빈도를 바탕으로 각 암종별 조직의 상태를 분류했다. 또한 미국의 암 환자 공공 데이터베이스(TCGA) 등의 대규모 코호트 데이터를 활용해 각 세포 상태가 암 환자의 치료 및 예후에 미치는 영향을 분석했다.
특히 여러 세포 상태 간의 상호작용 분석을 통해서 암세포 생태계 네트워크를 구축하였고, 이 중에서 삼차 림프 구조(tertiary lymphoid structure)* 구성요소를 포함하는 인터페론 연관 생태계가 삼성서울병원 이세훈 교수 연구팀의 폐암 코호트를 포함해 면역관문 억제 치료(immune checkpoint inhibitor)**를 받은 여러 암종들에서 면역관문 억제 치료 반응 예측에 효과적임을 확인했다.
*삼차 림프 구조: 림프절과 유사하지만 건강한 조직에서는 형성되지 않고, 만성염증, 감염, 암 등이 있는 곳에서 면역 세포들이 조직화되어 형성되는 구조물
**면역관문 억제치료: T세포 혹은 암세포에서 발현되는 PD-1/PD-L1, CTLA-4와 같은 면역관문(immune checkpoint)을 차단하여 암세포와 싸우는 면역 반응을 활성화시키는 치료방법
연구를 주도한 박종은 교수는 “이번 연구를 통해 세계 최대 규모의 암 조직 데이터베이스를 구축하였고, 이를 바탕으로 면역 치료의 예후 예측에 중요한 영향을 줄 것이다. 또한 소수의 환자에게 아주 좋은 치료반응을 보이나 일부의 경우 면역 관련 부작용을 나타내는 면역 관문 억제제의 치료 대상군 선정에 큰 도움을 줄 것으로 기대된다.”고 말했다.
이번 연구 결과는 국제 학술지 ‘네이쳐 커뮤니케이션즈(Nature Communications)’ 지에 5월 14일 자 출판됐으며, KAIST 세포 아틀라스 웹 포탈 https://cellatlas.kaist.ac.kr 을 통해 공개되고 있다.
한편 이번 연구는 한국연구재단의 차세대바이오유망범용기술연구지원사업과 우수신진연구사업, 한국보건산업진흥원 연구중심병원 육성사업, 융합형의사과학자양성사업 및 포스코사이언스펠로우십의 지원을 받아 수행됐다.
2024.05.22
조회수 2249
-
개인 맞춤형 정밀 의학 정확도 높일 ‘렌즈’ 개발
평균이 아닌 개인차를 고려하는 정밀 의학 시대가 열렸다. 사람마다 다른 유전적 특징을 알아내는 기술이 비약적으로 발전한 덕분이다. 더 빠르고, 정확하게 전사체를 해독할 수 있는 새로운 도구가 개발됐다. 우리 대학 수리과학과 김재경 교수(IBS 수리 및 계산 과학 연구단 의생명 수학 그룹 CI) 연구팀은 전사체 분석 빅데이터에서 유용한 생물학적 정보만 골라내는 새로운 도구인 ‘scLENS(single-cell Low-dimension Embedding using Effective Noise Subtraction)’를 개발했다.
단일세포 전사체 분석은 최근 생물학, 신약 개발, 임상 연구 등 여러 분야에서 주목받는 도구다. 개별 세포 단위에서 유전적 변화를 확인할 수 있기 때문이다. 가령, 단일세포 전사체 분석을 이용하면 암 조직 내 수십 가지 종류의 세포를 구분하고, 유전적 변이가 발생한 세포만 표적하는 정밀 치료가 가능해진다.
단일세포 전사체 분석 기술이 임상에 광범위하게 이용되려면, 도출되는 빅데이터에서 유용한 생물학적 신호를 찾아내는 효율적인 분석 도구 개발이 선행돼야 한다. 단일세포 전사체 분석은 수백~수천 개에 이르는 개별 세포의 수만 개에 이르는 다양한 유전자 발현량을 측정하기 때문에 데이터 용량이 수~수십 GB에 달한다. 이 방대한 데이터 중 생물학적으로 유용한 신호는 3% 내외에 불과하다.
이 방대하고 노이즈(잡신호)가 많은 데이터에서 유용한 생물학적 신호를 골라내기 위해 지금까지 여러 데이터 처리 도구가 개발됐다. 하지만 기존 도구는 사용자가 생물학적 신호와 노이즈의 ‘경계선’을 직접 설정해야 해서 주관이 개입됐다. 즉, 분석가에 따라 결과가 크게 달라지고, 정확도가 떨어진다는 한계가 있었다.
우선, 연구진은 기존 분석 도구들이 부정확한 근본적인 원인을 규명하고 해결책을 제시했다. 사용자가 노이즈의 임계값을 결정하는 데이터 전처리 방식 자체가 생물학적 신호를 왜곡시킨다는 것을 규명하고, 왜곡 없는 새로운 전처리 방식을 개발했다. 나아가 연구진은 수학적 방법론인 ‘랜덤 행렬 이론’을 이용해 사용자의 주관적 선택 없이 자동으로 단일세포 전사체 분석 데이터에서 신호와 노이즈를 구별하는 프로그램인 ‘scLENS’를 개발했다.
제1 저자인 김현 연구원은 “scLENS는 사용자의 선택 없이 데이터에 내재된 구조만을 이용해 자동으로 신호와 노이즈를 구별하기 때문에 사용자 편향성 문제를 원천 차단할 수 있다”며 “연구자들의 노동집약적인 신호 선택 과정을 없애면서도 분석 정확성은 높였다”고 설명했다.
이어 연구진은 기존 개발된 11가지 데이터 분석 프로그램과 scLENS의 상대적 성능을 비교했다. 이를 통해 scLENS가 다른 모든 프로그램보다 우수한 성능을 보인다는 점을 확인할 수 있었다. 널리 쓰이는 프로그램인 ‘Seurat’과 비교했을 때 scLENS는 세포 그룹화 성능이 약 10% 이상 우수하며, 데이터에 내재된 국소 구조를 43% 더 효과적으로 포착하는 것으로 나타났다.
특히, scLENS는 기존 프로그램보다 많은 계산을 하지만 메모리 사용 최적화를 통해 10만 개의 세포와 2만 개의 유전자로 이뤄진 대규모 데이터를 3시간 만에 분석하는 경쟁력 있는 분석 속도를 보였다.
연구를 이끈 김재경 CI는 “지난 십여 년간 단일세포 전사체를 분석할 수 있는 실험 기술의 비약적인 발전했지만, 데이터 분석 방법의 한계로 인해 큰 비용과 시간을 투자해 얻은 데이터를 최대한 활용하지 못하는 경우가 많았다”며 “기초 수학 이론이 생명과학 연구의 혁신을 견인하고, 감춰졌던 생명의 비밀을 빠르고 정확하게 밝히는 데 쓰일 수 있음을 보여주는 연구”라고 말했다.
연구결과는 4월 27일(한국시간) 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications, IF 16.6)’ 온라인판에 실렸다.
2024.05.09
조회수 2007
-
제약 혼합물 최고 분리막 기술 선보이다
분자의 크기와 모양에 따라 분자를 구별할 수 있는 분리막 공정*은 기존의 열 분리 공정(예: 증류법)보다 훨씬 적은 에너지를 소비하며 화학 산업의 탄소 배출량을 줄일 수 있는 잠재력을 가지고 있다.
*분리막 공정: 분리막은 물질의 크기나 흡수력에 따라서 특정 물질을 선택적으로 통과시키거나 배제하는 역할을 하는 선택적 장애물로 분리막을 이용한 분리 공정은 기존의 공정과 달리 많은 에너지를 사용하지 않고도 화합물들을 효율적으로 분리할 수 있음
우리 대학 생명화학공학과 고동연, 임성갑 교수 공동연구팀이 기존에 분리하기 어려웠던 크기의 활성 제약 분자들을 매우 높은 선택도로 분리할 수 있는 초박막 분리 기술을 세계 최초로 개발했다고 29일 밝혔다.
분리막은 산업계 전반에 사용되는 유기용매들을 분리하는데 저에너지, 저탄소 해결법을 제공할 수 있어 비교적 짧은 상업화 역사에도 불구하고 석유화학, 반도체, 재생합성연료(E-Fuel), 바이오 제약 분야 등 폭넓은 분야에 응용되고 있다.
해수 담수화와 같은 전통적인 응용 분야를 뛰어넘어 분리막이 고부가가치의 화합물을 선택적으로 분리하기 위해서는 기존 소재의 한계를 뛰어넘을 수 있는 혁신적인 고분자 소재의 개발이 필요하다.
연구팀은 반도체 제조 공정에 쓰이는 고분자 박막 증착 기술로 기존 소재의 한계를 뛰어넘는 성능의 분리막을 제조하고, 이를 이용해 고부가가치의 제약 혼합물을 선택적으로 정제할 수 있는 기술을 개발했다.
연구팀은 iCVD(개시제를 이용한 화학 기상 증착법, initiated Chemical Vapor Deposition) 기술을 이용해 기존에 박막으로 만들기 어렵다고 알려진 유기 실록산 고분자를 초박막으로 합성하고 이를 이용해 활성 제약 분자를 선택적으로 정제할 수 있는 분리막 공정을 개발했다. 연구팀은 이와 같은 새로운 접근 방식을 이용해 극도로 얇으면서도 다중으로 연결돼있는 고분자 분리막을 만드는 데 성공했다.
연구팀은 29나노미터(nm) 두께의 분리막을 이용해 다양한 활성 제약 성분, 석유 화합물, 연료 분자 등이 속하는 크기인 분자량 150~350g/mol 범위에 존재하는 분자들을 정제할 수 있다. 다양한 유기 물질이 섞여 있는 매우 복잡한 용매 환경에서 작동할 수 있도록 고안된 이 기술은 기존 분리막의 수명과 분자 선택도를 뛰어넘는 분리막 성능을 입증해 산업계에 분리막이 적용될 수 있는 영역을 넓힐 것으로 기대된다.
연구팀은 나아가 헤르페스 바이러스 치료에 사용되는 주요 활성 제약 성분(API, Active Pharmaceutical Ingredient)인 아시클로버 (Acyclovir), 발라시클로버(Valacyclovir)와 같이 비슷한 모양 및 비슷한 크기(분자량)를 가진 분자들이 섞여있을 때 매우 높은 순도로 아시클로버만 분리해낼 수 있음을 시연했다. 따라서 이번 연구는 분리막 기술을 이용해 기존 제약 제조 공정보다 더 값싸고 에너지 비용이 적은 방법으로 제약 물질을 정제할 수 있음을 밝혀낸 데 의미가 있다.
이번 연구를 이끈 고동연 교수는 "iCVD 방식을 사용한 초박막의 성공적인 제작은 불필요한 반응 없이 결함이 없고 고품질의 밀도 높은 고분자 분리막을 합성할 수 있는 강력한 방법ˮ 이라며 "이전에 접근할 수 없었던 고분자 소재를 제공해 고성능 분리막의 정교한 설계를 촉진할 것ˮ 이라고 말했다.
우리 대학 생명화학공학과 최지훈, 최건우 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘네이쳐 커뮤니케이션즈(Nature Communications)’ 3월 15호에 지난 3월 30일 자 출판됐다. (논문명: Ultrathin organosiloxane membrane for precision organic solvent nanofiltration).
한편 이번 연구는 한국연구재단의 우수신진과제, 중견연구과제 및 한국화학연구원 기본사업 협력과제를 통해 지원됐다.
2024.04.29
조회수 2677
-
생성형 AI로 혁신적 신약 개발 가능성 열어
최근 자연어나 이미지, 동영상, 음악 등 다양한 분야에서 주목받는 생성형 AI가 신약 설계 분야에서도 기존 신규성 문제를 극복하고 새로운 혁신을 일으키고 있다고 하는데 어떤 기술일까?
우리 대학 화학과 김우연 교수 연구팀이 단백질-분자 사이의 상호작용을 고려해 활성 데이터 없이도 타겟 단백질에 적합한 약물 설계 생성형 AI를 개발했다고 18일 밝혔다.
신규 약물을 발굴하기 위해서는 질병의 원인이 되는 타겟 단백질에 특이적으로 결합하는 분자를 찾는 것이 중요하다. 기존의 약물 설계 생성형 AI는 특정 단백질의 이미 알려진 활성 데이터를 학습에 활용하기 때문에 기존 약물과 유사한 약물을 설계하려는 경향이 있다. 이는 신규성이 중요한 신약 개발 분야에서 치명적인 약점으로 지적되어 왔다. 또한 사업성이 높은 계열 내 최초(First-in-class) 타겟 단백질에 대해서는 실험 데이터가 매우 적거나 전무한데, 이 경우 기존 방식의 생성형 AI를 활용하는 것이 불가능하다.
연구팀은 이런 데이터 의존성 문제를 극복하기 위해 단백질 구조 정보만으로 분자를 설계하는 기술 개발에 주목했다. 타겟 단백질의 약물 결합 부위에 대한 3차원 구조 정보를 주형처럼 활용해 해당 결합 부위에 꼭 맞는 분자를 주조하듯 설계하는 것이다. 마치 자물쇠에 딱 맞는 열쇠를 설계하는 것과 같은 이치다.
또한 기존 단백질 구조 기반 3차원 생성형 AI 모델들은 신규 단백질에 대해 설계한 분자들의 안정성과 결합력이 떨어지는 등 낮은 일반화 성능을 개선하기 위해서 연구팀은 신규 단백질에 대해서도 안정적으로 결합할 수 있는 분자를 설계할 수 있는 기술을 개발하는 데 초점을 뒀다.
연구팀은 설계한 분자가 단백질과 안정적으로 결합하기 위해서는 단백질-분자 간 상호작용 패턴이 핵심 역할을 하는 것에 착안했다. 연구팀은 생성형 AI가 이러한 상호작용 패턴을 학습하고, 분자 설계에 직접 활용할 수 있도록 모델을 설계하고 재현할 수 있도록 학습시켰다.
기존 단백질 구조 기반 생성형 AI 모델들은 부족한 학습 데이터를 보완하기 위해 10만~1,000만 개의 가상 데이터를 활용하는 반면, 이번 연구에서 개발한 모델의 장점은 수천 개의 실제 실험 구조만을 학습해도 월등히 높은 성능을 발휘한다는 것이다. 이는 자연에서 관찰되는 단백질-분자 상호작용 패턴을 사전 지식의 형태로 학습에 활용함으로써 적은 데이터만으로도 일반화 성능을 획기적으로 높인 것에 기인한다.
일례로 아시아인에 주로 발견되는 돌연변이 상피 성장인자 수용체(EGFR-mutant)*는 비소세포폐암의 주요 원인으로 알려져 있는데, 이를 타겟으로 하는 약물을 설계하기 위해서는 야생형(wild-type) 수용체**에 대한 높은 선택성을 고려하는 것이 필수적이다.
*상피 성장인자 수용체: 상피 성장인자 수용체:상피 성장인자 수용체는 상피 세포의 성장을 촉진하는 인자에 결합함으로써 활성화되는 막 단백질로, 이 수용체의 돌연변이로 인한 지나친 활성은 다양한 종양의 발생과 관련이 있다고 알려져 있음
**야생형 수형체: 야생형은 자연 상태에서 가장 흔하게 발견되는 유전자형 또는 표현형으로, 유전자나 생체 분자 등의 변이가 없는 정상적인 상태를 말함
연구진은 생성형 AI를 통해 돌연변이가 일어난 아미노산에 특이적인 상호작용을 유도해 분자를 설계했고, 그 결과 생성된 분자의 23%가 이론상으로 100배 이상의 선택성을 가지는 것으로 예측됐다. 이와 같은 상호작용 패턴에 기반한 생성형 AI는 인산화효소 저해제(kinase inhibitor)* 등과 같이 약물 설계에 있어 선택성이 중요한 상황에서 더욱 효과적으로 활용될 수 있다.
*인산화효소 저해제: 단백질의 인산화를 촉진하는 효소로, 일반적으로 아데노신 삼인산(ATP)으로부터 인산기를 단백질의 특정 잔기에 전달함. 인산화효소는 세포 내 신호전달 네트워크의 핵심 조절자로서, 다양한 질병의 기전에 관여하여 약물 개발의 표적으로 여겨지고 있음. 이를 위해 인산화효소에 결합하여 활성을 억제하는 목적을 가지는 분자를 인산화효소 저해제라 함
제1 저자로 참여한 화학과 정원호 박사과정 학생은 “사전 지식을 인공지능 모델에 사용하는 전략은 상대적으로 데이터가 적은 과학 분야에서 적극적으로 사용되어 왔다”며 “이번 연구에서 사용한 분자 간 상호작용 정보는 약물 분자뿐 아니라 다양한 생체 분자를 다루는 바이오 분야의 문제에도 유용하게 적용될 수 있을 것”이라고 말했다.
한국연구재단의 지원을 받아 수행된 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications) (IF=16.6)’ 2024년 3월 15호에 게재됐다. (논문명: 3D molecular generative framework for interaction-guided drug design, 논문 링크: https://www.nature.com/articles/s41467-024-47011-2)
2024.04.18
조회수 2832
-
세계 최고 속도 입체적 조명 기술 개발
디스플레이(조명) 기술에서는 고속화가 아주 중요한 성능 중 하나로 꼽힌다. 최근 주요 스마트폰 제조사들은 화면 전환 속도가 기존의 초당 60회보다 크게 향상된 초당 120회의 고속 디스플레이를 선보였다. 이런 고속 디스플레이를 탑재한 모델의 이용자들 사이에 ‘한번 경험하면 예전으로 돌아갈 수 없다’는 말이 회자될 정도로, 고속화는 상업적인 가치도 크다고 볼 수 있다.
우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 북해도대학 전자과학연구소의 시부카와 아츠시 부교수, 미카미 히데하루 교수, 오카야마대학 의·치·약과학과의 스도 유키 교수 연구팀과 공동연구를 통해 세계 최고속의 3차원 광 패턴 조명 기술*을 개발하는 데 성공했다고 15일 밝혔다.
*광 패턴 조명 기술: 빛을 특정 패턴이나 형태로 조절하여 원하는 조명 효과를 얻는 기술
광 패턴 조명 기술은 우리에게 친숙한 디스플레이나 빔프로젝터에서 찾아볼 수 있다. 디스플레이나 빔 프로젝터 내부에는 원하는 이미지나 모양 등을 화소 단위로 만들어낼 수 있는 광 패턴 조명 장치인 공간 광 변조기*가 사용되고 있다. 이외에도 광 패턴 조명 기술은 최근 주목받는 가상 현실 기술 분야의 핵심 요소 기술인 3차원 디스플레이 기술에도 사용되며, 산업 분야에서는 금속 가공, 연구 분야에서는 뇌 심부 이미징을 위한 레이저 스캐닝 현미경 등에 사용되고 있다.
*공간 광 변조기: 빛을 화소 단위로 조작하여 원하는 이미지나 모양을 만들어내는 장치로, 빔 프로젝터나 3차원 디스플레이 기술 등에 사용되는 장치
하지만 공간 광 변조기는 조명 패턴의 전환을 고속으로 수행하는 데 큰 한계를 겪고 있었다. 현재 시판되는 공간 광 변조기는 액정형 디스플레이 장치나 디지털 미러 장치가 있지만, 통상적인 전환 속도는 50마이크로초에서 10밀리초 수준으로 제한되며, 원리적으로 이보다 더 빠르게 만드는 데에는 기술적 어려움이 있었다.
연구팀은 공간 자유도-시간 자유도 사이의 치환 개념을 개발하고, 이를 독자 개발한 초고속 1차원 광 변조기와 산란 매질*을 결합하여 구현하는 방식으로, 시판되는 공간 광 변조기보다 약 1,500배 빠른 30나노초의 전환 속도를 갖는 세계 최고 속도의 3차원의 조명(디스플레이) 기술을 개발했다.
*산란 매질: 안개나 물방울 맺힌 유리창처럼 빛을 무질서하게 굴절시키는 물질
연구팀은 빛의 전파를 교란하는 산란 매질의 특성을 역이용해 1차원의 광 패턴을 사용자가 원하는 3차원의 패턴으로 변환하기 위해 복잡 광 파면 조작 기술을 핵심 기술로 활용했다.
연구팀이 개발한 세계 최고 속도의 광 패턴 조명 기술은 특정 각도에서만 볼 수 있는 기존의 2차원 유사 홀로그램과 달리 실제로 3차원 공간상에 광 정보를 재구성해 입체 영상을 만드는 기술로 활용될 수 있다. 그뿐만 아니라 광유전학 기술에 기반한 뇌 신경 조절 기술과 같은 생체 조절 기술의 고속화·대규모화나 금속 3D 프린터 등의 광 가공 생산 효율 향상 등, 다양한 분야에서 응용될 전망이다.
*광유전학 기술: 빛을 이용해 살아있는 생물 조직의 세포를 제어하는 기술
해당 연구 결과는 바이오및뇌공학과 송국호 박사과정이 공저자, 장무석 교수가 교신저자로 참여했으며 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 2024년 4월 8일 온라인판에 게재되었다. (논문명 : Large-volume focus control at 10 MHz refresh rate via fast line-scanning amplitude-encoded scattering-assisted holography)
이번 연구는 과학기술정보통신부 한국연구재단이 주관하는 선도연구센터사업(컬러변조 초감각 인지기술 선도연구센터), 우수신진연구자 사업, 삼성미래기술육성사업, 국토교통부 국토교통과학기술진흥원이 주관하는 차세대 대인 보안검색 기술 개발 사업의 지원을 받아 수행됐다.
2024.04.15
조회수 2554
-
차세대 이차원 반도체 핵심 기술 개발
물질 증착, 패터닝, 식각 등 복잡한 과정들이 필요했던 기존 반도체 공정과는 달리, 원하는 영역에서만 선택적으로 물질을 바로 증착하는 기술은 공정을 획기적으로 줄일 수 있는 차세대 기술로 크게 주목받고 있다. 특히, 현재의 실리콘을 대체할 차세대 이차원 반도체에서 이런 선택적 증착 기술 개발이 핵심 요소기술로 중요성이 더욱 커지고 있다.
우리 대학 신소재공학과 강기범 교수 연구팀과 고려대학교 김용주 교수 연구팀이 이차원 반도체의 수평 성장 성질을 이용해 쉽고 간편한 산화물, 금속 등의 10나노미터 이하 미세 패터닝 기술을 공동 개발했다고 28일 밝혔다.
강 교수 연구팀은 차세대 반도체 물질로 주목받는 이차원 전이금속 ‘칼코겐’ 물질의 독특한 결정학적 특징을 패터닝 기술에 접목했다. 일반적인 물질과는 달리 이차원 물질은 성장 시 수평 방향으로만 자랄 수 있기에 서로 다른 이차원 물질을 반복적으로 성장해 10나노미터 이하 수준의 이차원 반도체 선형 패턴을 제작할 수 있다.
이러한 선형 패턴에 다양한 물질(산화물, 금속, 상변화 물질)을 성장할 때 한 영역 위에서만 선택적으로 증착되는 현상을 최초로 발견했다. 해당 기술을 통해 타깃 물질 패턴 크기의 축소와 이차원 반도체의 소자 제작 공정 효율성 증대 등을 기대할 수 있다.
일반적으로 선형 패턴의 크기는 이차원 물질 합성에 사용되는 기체 상태의 분자들의 유입 시간으로 결정된다. 해당 연구에서는 약 1초당 1나노미터의 패턴 크기를 형성할 수 있기에 기존 광 기반 패터닝 기술에 비해 효과적으로 크기를 줄일 수 있다.
연구팀이 개발한 선택 증착 기술은 선폭 10나노미터 수준의 좁은 패턴에서도 원하는 물질이 한 영역 위에서만 선택적으로 증착됐으며, 기존 기술과는 달리 두께 20나노미터 이상에서도 선택적 증착이 가능했다.
연구팀이 개발한 기술은 다양한 물질들에서 적용할 수 있다. 반도체 산업에서 소자 제작에 필수적으로 활용되는 고유전율 절연체(산화 알루미늄, 산화 하프늄)와 전극 금속(루테늄) 등의 선택적 증착을 확인했다. 이러한 뛰어난 물질 확장성은 연구팀이 제시한 새로운 선택 증착 메커니즘에 의해 가능한 것으로 알려졌으며, 추후 더 넓은 응용 기술 개발에 활용할 것으로 기대된다.
연구팀의 기술은 차세대 물질인 이차원 반도체 기반에서 적용되기에 이차원 반도체에 효과적으로 게이트 절연체 및 전극의 형성을 도울 것으로 기대된다. 이는 향후 이차원 반도체가 실리콘을 대체할 때 핵심적인 요소기술로 작용할 것이며, 한국에서 가장 중요한 연구 분야인 반도체 시장에서 활발히 응용될 수 있다.
제1 저자인 박정원 연구원은 "새로운 원리의 선택 증착 기술이자 다양한 물질을 10나노미터 이하의 선폭으로 패터닝할 수 있는 차세대 기술을 개발했다ˮ 라며 "특히 템플릿으로 사용되는 이차원 반도체에 선택 증착을 통해 게이트 산화물과 전극 등으로 직접 이용하면 이 기술의 기대 효과는 더욱 커진다ˮ 라고 말했다.
신소재공학과 박정원 석박사통합과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 3월 15권에 3월 8일 자 출판됐다. (논문명 : Area-selective atomic layer deposition on 2D monolayer lateral superlattices).
한편 이번 연구는 한국연구재단의 지원을 받아 수행됐다.
2024.03.28
조회수 2310