-
‘드림워커’, MIT, CMU를 제치고 1등하다
최근 별도의 시각이나 촉각 센서의 도움 없이 계단도 성큼 오를 수 있는 보행로봇 제어기인‘드림워크(DreamWaQ)’를 장착한 KAIST 자율보행로봇이 국제 사족보행 로봇 경진대회에서 1등을 하여 화제다.
전기및전자공학부 명현 교수 연구팀(미래도시 로봇 연구실)이 ‘23. 5. 29 ~ 6.2 영국 런던에서 개최된 로봇 분야 최대 규모 학술대회인 2023 국제 로봇 및 자동화 학술대회(IEEE International Conference on Robotics and Automation, ICRA)에서 주최한 사족로봇 자율보행 경진대회(Quadruped Robot Challenge, QRC)에서 현지 시간 6월 1일 압도적인 점수 차를 보이며 우승을 거두었다고 밝혔다.
명현 교수 연구팀은 독자적으로 개발한 단위 기술들을 체계적으로 통합 및 최적화하여, 전 세계에서 한국을 포함한 미국, 홍콩, 이탈리아, 프랑스 등 총 11개 팀이 참여하고 7개의 팀이 본선에 진출한 QRC에서 성공적인 자율보행을 선보였으며 최종 6개의 팀이 참여한 결승전에서 총점 246점을 거두었다. 이는 60점을 획득한 메사추세츠 공과대학교(MIT)의 4배 이상으로, 사실상 압도적인 차이로 따돌리며 우승을 거머쥐었다 (1위: KAIST, Team DreamSTEP, 2위: MIT, 3위: 카네기멜론 대학(CMU)). KAIST 팀은 소형 사족 보행 로봇을 사용하였으나 가장 빠르게 움직이며 가장 높은 점수를 획득하였다는 점도 주목할만하다. 결승전에서 원격 수동 조작을 위주로 한 팀들이 평균 약 49분의 완주 시간을 기록한 반면, KAIST 팀은 자율 보행 위주로 41분 52초의 완주 시간을 기록하였다 (2위 MIT는 원격조작으로 45분 32초). 동 대회에 우승한 본 연구팀은 약 2,000만원 상당의 보행 로봇을 수여받았고, 약 300만원 상당의 보조금을 받을 예정이다.
조종자가 조종기 조작을 통해 로봇을 쉽게 조종할 수 있지만, 로봇이 가시거리를 벗어나면 별도의 통신을 통해 수신된 센서 정보를 이용해 로봇의 상태를 사람이 추측하며 로봇을 조종해야 한다. 하지만, 통신 지연이나 두절로 인해 센서 정보 취득이 원활하지 못한 경우가 발생할 수 있고, 이럴 경우 제어가 어렵다는 단점이 존재한다.
이러한 문제점을 해결해 주는 것이 다름 아닌 자율보행 기술이다. 자율보행 시스템 구축을 위해서는 제어기뿐 아니라, 로봇의 위치와 주변 환경을 추정하는 기술과 이동 경로를 계획하는 기술의 개발도 함께 요구된다. 이러한 여러 단위 기술들의 개발이 필수적이기에, 세계적으로도 완성도 높은 자율보행 기술을 확보한 연구팀은 손에 꼽힐 정도이다.
연구팀은 다양한 환경에서의 자율보행을 위하여 카메라, 3차원 라이다(LiDAR) 센서, 관성 센서(IMU), 관절 센서로부터 획득된 정보를 모두 융합하여 사용하였다. 많은 센서를 사용했음에도 불구하고, 미니컴퓨터 하나에서 강인하고 정확한 위치 추정뿐 아니라 주변 환경 인지와 경로 계획까지 실시간으로 진행될 수 있도록 효율적인 시스템을 구축하였다.
로봇 주변의 지형 지도를 작성하는 기술은 고가의 LiDAR 센서에만 의존하지 않고, 상대적으로 저렴한 깊이 카메라로 대체할 수 있다. 추정된 로봇 위치의 주변 지형 지도를 빈틈없이 매끄럽게 작성하고, 이 지도를 활용해 안전한 지형을 스스로 판단해 보행할 수 있도록 적합한 경로를 계획한다. 드림워크가 탑재된 로봇이 극복할 수 있는 최대 단차와 로봇의 크기를 고려하여 경로를 계획하여 로봇이 넘어지는 상황은 최소화한다. 그러나 혹여 보행 중 넘어질 때도, 자동으로 다시 일어나 임무를 수행할 수 있도록 하나 강화학습 기반의 재회복 (Fall recovery) 기술도 자체 개발하여 탑재하였다.
명현 교수는 “ 동 경진대회에서 사용된 제어기인 드림워크 뿐 아니라, 로봇 주변의 환경을 인지하고 적절한 경로를 찾을 수 있도록 하는 기술 모두 본 연구팀이 독자적으로 개발한 기술로, 국내 로봇 산업 경쟁력 제고에 이바지할 것으로 기대된다”고 전했다.
한편, 이번 연구는 산업통상자원부 로봇산업핵심기술개발 사업의 지원을 받아 수행되었다. (과제명: 동적, 비정형 환경에서의 보행 로봇의 자율이동을 위한 이동지능 SW 개발 및 실현장 적용)
KAIST DreamSTEP 팀의 구성원:
명현 교수 (지도교수), 유병호 박사과정 (팀장), 이 마데 아스윈 나렌드라(I Made Aswin Nahrendra) 박사과정, 김예은 박사과정, 오민호 박사과정, 마심 케빈 크리스티안센(Marsim Kevin Christiansen) 석박사통합과정, 이현우 박사과정, 이승재 석사과정, 이동규 석사과정
2023.06.07
조회수 10624
-
기계공학과 권동수 명예교수, IEEE/ICRA 2023 특별 공로상 수상
우리 대학 기계공학과 명예교수이자, ㈜로엔서지컬 대표이사인 권동수 교수가 6월 1일 런던에서 개최된 국제로봇 & 자동화 컨퍼런스 ICRA 2023(IEEE/International Conference on Robotics and Automation)’에서 IEEE 로봇 자동화학회 RAS (Robotics and Automation Society) 위원회 및 학회에서의 지속적인 활동과 과학 분야에서의 탁월한 리더쉽을 인정받아 특별 공로상(Distinguished Service Award)를 수상하였다고 밝혔다.
이번에 권 교수가 수상한 ICRA 특별 공로상은 IEEE RAS 위원회 발전을 위하여 기여한 구성원 개인의 공로를 치하하는 상으로, 권 교수는 지난 2014년 세계에서 단 여섯 명을 뽑는 IEEE 운영위원회 선거에서 투표를 통해 당선된 첫 한국인이다. 권 교수는 당선 이래 로봇자동화와 관련된 기술표준을 포함해 48개의 기술위원회 활동과 각국 IEEE RAS 챕터활동, 전 세계에서 열리는 다양한 IEEE 로봇분야 학회 관련사항을 최종 결정하는 이사를 역임하며 국내 로봇분야 연구개발 성과의 국제표준 채택 기회를 늘리는 등 국내 로봇산업의 국제화 초석을 다져왔다.
또한, 권 교수는 2022년 세계적인 로봇 국제학술대회인 IEEE IROS(IEEE/RJS International Conference on Intelligent Robots and Systems)에서 27년간 KAIST 연구개발을 바탕으로 창업한 ㈜로엔서지컬의 신장결석 제거 로봇 ‘자메닉스(Zamenix™)와 유연수술로봇 플랫폼에 관한 혁신적 연구 업적을 인정 받아 “IROS 하라시마 혁신기술상(Harashima Award for Innovative Technologies)”을 수상한 바 있다.
권동수 명예교수는 학술연구 · 개발에 그치지 않고, “로엔서지컬 제품의 국내 의료시장 판매를 시작으로 제품의 국제 규정 준수 및 인증을 통해 안전성, 효능, 성능 등에 대한 품질을 확보하고, 글로벌 기업과 협력하여 세계의료시장 유통망을 구축해 갈 것“이라는 계획을 밝혀 앞으로의 귀추가 주목된다.
2023.06.05
조회수 3443
-
기계공학과 김정 교수팀, 국제 로봇/자동화 분야 세계적 권위의 저널 최우수논문상 수상
우리 대학 기계공학과 생체기계연구실(지도교수: 김정) 정화영, 풍 제유(Jirou Feng) 박사과정이 2022년 IEEE 국제 로봇/자동화 저널(RA-L, Robotics and Automation Letter) 최우수 논문상(Best paper award)을 수상했다고 2일 밝혔다.
최우수 논문상은 6월 1일 영국, 런던에서 주최된 국제 로봇자동화학회(ICRA2023, The 2023 International Conference on Robotics and Automation)에서 수여됐다. ICRA는 매년 개최되는 세계 최대 규모의 로봇 학회이며 RA-L은 최고 수준의 국제 로봇 학회들과 연계해 엄선된 논문을 출판하는 저널이다. 김정 교수 연구팀의 논문은 2022년 한해간 RA-L (Robotics and Automation Letter)에 출간된 1,100개 이상의 논문 중 편집자 위원회(Editorior board)에서 선정된 최우수 논문 5개 중 한 편으로 선정되어 상패와 함께 상금이 수여된다. (논문제목: 2.5D Laser-Cutting-Based Customized Fabrication of Long-Term Wearable Textile sEMG Sensor: From Design to Intention Recognition)
근전도 센서는 인간의 근육 활성도를 측정하는 수단으로 인간-기계 상호작용을 위한 착용형 시스템에 널리 사용되고 있다. 초기에는 근육 진단과 평가를 위해 의료계나 연구계서 국한된 환경에서만 사용돼왔으나 건강 모니터링이나 의수, 의족 등 더욱 일반적인 분야로 사용이 확장되고 있다.
이런 일상에서의 장시간 활용을 위해서는 사람이 착용하고 일상생활에 불편함이 없으면서도 일상에서의 움직임이나 변화가 신호에 영향을 주지 않는 센서의 개발이 필요하다. 기존의 상용 센서의 경우 단단한 소재로 제작되어 착용이 불편할 뿐 아니라 땀 발생에 취약한 성향을 보인다. 피부와 전극 사이에 전도성을 가진 땀 층이 생길 경우 전기적 단락이 발생할 수 있으며 물리적으로 센서가 미끄러질 가능성도 커져 결과적인 신호의 질에 큰 영향을 미친다. 또한 일반 사용자가 신호 수집이 필요한 정확한 위치를 파악하고 전극을 위치 시키는 것도 어렵다.
연구팀은 이러한 문제를 해결하고자 땀을 흡수하면서 착용자에게 불편함을 최소화한 천 기반의 대면적 센서를 효율적으로 그리고 착용자에 맞춤형으로 디자인하여 제작할 수 있는 방법에 대해 제시하고 센서 디자인부터 실제 사용하여 의도를 인식해내는 방법까지 전체적인 솔루션을 제공하였다. 기존에 천 전극 센서들이 많이 제시되어 왔지만 사용자 맞춤형, 대면적으로 제작하는 방법에 대한 제시에는 부족한 점이 많아 실제 활용 가능성이 불투명하였다. 하지만 본 연구에서는 컴퓨터 기반으로 디자인 된 패턴을 레이저 커팅을 통해 그대로 구현해낼 수 있는 2.5D 레이저 커팅 기반의 제작 방식을 소개하여 사용자 맞춤형으로 쉽게 디자인을 변경하고 제작해낼 수 있도록 하였다. 2.5D 레이저 커팅의 경우 레이저의 세기를 조절하여 레이저가 잘라내는 깊이를 다르게 함으로써 원하는 패턴 형성을 가능케 한다.
또한 전극 부분에 전도성 다공체를 활용함으로써, 전도성을 띠는 땀을 흡수하여 전해액으로 활용할 수 있도록 하여 땀이 발생하더라도 센서 성능 및 동작 분류 정확도에 변화가 거의 없도록 하였다. 그 결과 땀이 발생하는 운동 전후로도 유사한 신호 개형을 획득할 수 있었으며 땀의 여부와 관계없이 높은 동작 분류 정확도를 달성하였다.
연구진은 본 기술이 전극 크기와 개수에 상관없이 정밀하게 사용자 맞춤형으로 입는 형태의 센서를 제작할 수 있게 함으로써, 일상에서 사람의 의도 파악을 필요로 하는 응용 분야에 유용하게 활용될 것으로 기대했다. 예를 들면 의수, 의족의 경우 장시간 착용을 필요로 하는데 착용자에게 센서로 생기는 부담은 최소화하면서도 사람의 움직임과 가장 직접적인 연관이 있는 근육 신호 센서 사용을 통해 의수, 의족의 더욱 자연스러운 움직임을 가능케 해줄 수 있다.
김 교수는 “서비스 로봇을 위한 웨어러블 센서는 사람의 부착하는 부위의 형상에 맞게 가공하는 것이 산업화의 마지막 고비인데, 학생 연구원들이 좋은 아이디어를 내고 포기하지 않고 어려움을 극복하여 세계적으로 인정받는 좋은 결과를 냈다고 생각한다. 또한, 이번 상을 통해 자부심을 가지고, 더욱 큰 연구 결과를 얻을 수 있는 마중물이 되었으면 좋겠다.”라고 밝혔다.
한편, 이번 연구는 정부(과학기술정보통신부)의 지원으로 한국 연구재단-휴먼플러스융합연구개발 챌린지 사업의 지원을 받아 수행됐다.
2023.06.02
조회수 4796
-
111배 빠른 검색엔진용 CXL 3.0 기반 AI반도체 세계 최초 개발
최근 각광받고 있는 이미지 검색, 데이터베이스, 추천 시스템, 광고 등의 서비스들은 마이크로소프트, 메타, 알리바바 등의 글로벌 IT 기업들에서 활발히 제공되고 있다. 하지만 실제 서비스에서 사용되는 데이터 셋은 크기가 매우 커, 많은 양의 메모리를 요구하여 기존 시스템에서는 추가할 수 있는 메모리 용량에 제한이 있어 이러한 요구사항을 만족할 수 없었다.
우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)에서 대용량으로 메모리 확장이 가능한 컴퓨트 익스프레스 링크 3.0 기술(Compute eXpress Link, 이하 CXL)을 활용해 검색 엔진을 위한 AI 반도체를 세계 최초로 개발했다고 25일 밝혔다.
최근 검색 서비스에서 사용되는 알고리즘은 근사 근접 이웃 탐색(Approximate Nearest Neighbor Search, ANNS)으로 어떤 데이터든지 특징 벡터로 표현할 수 있다. 특징 벡터란 데이터가 가지는 특징들 각각을 숫자로 표현해 나열한 것으로, 이들 사이의 거리를 통해 우리는 데이터 간의 유사도를 구할 수 있다. 하지만 벡터 데이터 용량이 매우 커서 이를 압축해 메모리에 적재하는 압축 방식과 메모리보다 큰 용량과 느린 속도를 가지는 저장 장치를 사용하는 스토리지 방식(마이크로소프트에서 사용 중)이 사용되어 왔다. 하지만 이들 각각은 낮은 정확도와 성능을 가지는 문제가 있었다.
이에 정명수 교수 연구팀은 메모리 확장의 제한이라는 근본적인 문제를 해결하기 위해 CXL이라는 기술에 주목했다. CXL은 CPU-장치 간 연결을 위한 프로토콜로, 가속기 및 메모리 확장기의 고속 연결을 제공한다. 또한 CXL 스위치를 통해 여러 대의 메모리 확장기를 하나의 포트에 연결할 수 있는 확장성을 제공한다. 하지만 CXL을 통한 메모리 확장은 로컬 메모리와 비교해 메모리 접근 시간이 증가하는 단점을 가지고 있다.
데이터를 책으로 비유하자면 기존 시스템은 집에 해당하는 CPU 크기의 제한으로 서재(메모리 용량)를 무한정 늘릴 수 없어, 보관할 수 있는 책 개수에 제한이 있는 것이다. 이에 압축 방식은 책의 내용을 압축하여 더 많은 책을 보관하는 방법이고, 스토리지 방식은 필요한 책들을 거리가 먼 도서관에서 구해오는 것과 비슷하다. CXL을 통한 메모리 확장은 집 옆에 창고를 지어 책을 보관하는 것으로 이해될 수 있다.
연구진이 개발한 AI 반도체(CXL-ANNS)는 CXL 스위치와 CXL 메모리 확장기를 사용해 근사 근접 이웃 탐색에서 필요한 모든 데이터를 메모리에 적재할 수 있어 정확도를 높이고 성능 감소를 없앴다. 또한 근사 근접 이웃 탐색의 특징을 활용해 데이터 근처 처리 기법과 지역성을 활용한 데이터 배치 기법으로 CXL-ANNS의 성능을 한 단계 향상했다. 이는 마치 창고 스스로가 필요한 책들의 내용을 요약하고 정리해 전달하고, 자주 보는 책들은 서재에 배치해 집과 창고를 오가는 시간을 줄이는 것과 유사하다.
연구진은 CXL-ANNS의 프로토타입을 자체 제작해 실효성을 확인하고, CXL-ANNS 성능을 기존 연구들과 비교했다. 마이크로소프트, 메타, 얀덱스 등의 글로벌 IT 기업에서 공개한 검색 데이터 셋을 사용한 근사 근접 이웃 탐색의 성능 비교에서 CXL-ANNS는 기존 연구들 대비 평균 111배 성능 향상이 있었다. 특히, 마이크로소프트의 상용화된 서비스에서 사용되는 방식과 비교하였을 때 92배의 성능 향상을 보여줬다.
정명수 교수는 "이번에 개발한 CXL-ANNS는 기존 검색 엔진의 문제였던 메모리 용량 제한 문제를 해결하고, CXL 기반의 메모리 확장이 실제 적용될 때 발생하는 메모리 접근 시간 지연 문제를 해결했다ˮ며, “제안하는 CXL 기반 메모리 확장과 데이터 근처 처리 가속의 패러다임은 검색 엔진뿐만 아니라 빅 데이터가 필요한 고성능 컴퓨팅, 유전자 탐색, 영상 처리 등의 다양한 분야에도 적용할 수 있다ˮ라고 말했다.
이번 연구는 미국 보스턴에서 오는 7월에 열릴 시스템 분야 최우수 학술대회인 유즈닉스 연례 회의 `USENIX Annual Technical Conference, 2023'에 ‘CXL-ANNS’이라는 이름으로 발표된 예정이다. (논문명: CXL-ANNS: Software-Hardware Collaborative Memory Disaggregation and Computation for Billion-Scale Approximate Nearest Neighbor Search)
한편 해당 연구는 파네시아(http://panmnesia.com)의 지원을 받아 진행됐다.
2023.05.25
조회수 5342
-
반도체 소자 내 과열 해결방법 제시
최근 반도체 소자의 소형화로 인해 과열점(hot spot)에서 발생한 열이 효과적으로 분산되지 않아 소자의 신뢰성과 내구성이 저하되고 있다. 기존의 열관리 기술만으로는 심각해지는 발열 문제를 관리하는 데 한계가 있으며, 소자가 더욱 집적화됨에 따라 전통적 열관리 기술에서 탈피해 극한 스케일에서의 열전달 현상에 대한 근본적 이해를 바탕으로 한 접근이 필요하다. 기판 위에 증착된 금속 박막에서 발생하는 표면파에 의한 새로운 열전달 방식을 발견해 해결책을 제시하여 화제다.
우리 대학 기계공학과 이봉재 교수 연구팀이 세계 최초로 기판 위에 증착된 금속 박막에서 ‘표면 플라즈몬 폴라리톤’에 의해 발생하는 새로운 열전달 모드를 측정하는 데 성공했다고 밝혔다.
☞ 표면 플라즈몬 폴라리톤: 유전체와 금속의 경계면의 전자기장과 금속 표면의 자유 전자가 집단적으로 진동하는 유사 입자들이 강하게 상호작용한 결과로, 금속 표면에 형성되는 표면파(surface wave)를 의미한다.
연구팀은 나노 스케일 두께의 금속 박막에서 열확산을 개선하기 위해 금속과 유전체 경계면에서 발생하는 표면파인 표면 플라즈몬 폴라리톤을 활용했다. 이 새로운 열전달 모드는 기판에 금속 박막을 증착하면 발생하기 때문에, 소자 제작과정에 활용성이 높으며 넓은 면적에 제작이 가능하다는 장점이 있다. 연구팀은 반경이 약 3cm인 100나노미터 두께의 티타늄 박막에서 발생하는 표면파에 의해 열전도도가 약 25% 증가함을 보였다.
연구를 주도한 이봉재 교수는 "이번 연구의 의의는 공정난이도가 낮은 기판 위에 증착된 금속 박막에서 일어나는 표면파에 의한 새로운 열전달 모드를 세계 최초로 규명한 것으로, 이는 초고발열 반도체 소자 내 과열점 바로 근처에서 효과적으로 열을 분산시킬 수 있는 나노스케일 열 분산기(heat spreader)로 응용 가능하다ˮ고 말했다.
연구팀의 연구는 나노스케일 두께의 박막에서 열을 평면 방향으로 빠르게 분산시키는데 적용될 수 있다는 점에서 향후 고성능 반도체 소자 개발에 시사하는 바가 크다. 특히, 나노스케일 두께에서는 경계 산란에 의해 박막의 열전도도가 감소하는데, 연구팀이 규명한 이 새로운 열전달 모드는 오히려 나노스케일 두께에서 효과적인 열전달을 가능하게 해 반도체 소자 단위 열관리의 근본적인 문제를 해결해 줄 것으로 기대된다.
이번 연구는 국제학술지 `피지컬 리뷰 레터스(Physical Review Letters)'에 지난 4월 26일 字에 온라인 게재됐으며, 편집자 추천 논문(Editors' Suggestion)에 선정됐다. 한편 이번 연구는 한국연구재단의 기초연구실 지원사업의 지원을 받아 수행됐다.
2023.05.18
조회수 5598
-
항암 백신 찾는 ‘딥네오(DeepNeo)’ 개발
신생항원이란 암세포의 돌연변이에서 나온 단백질 조각 중 면역반응을 유도할 수 있는 항원들로서 항암 백신 개발의 이상적인 대상으로 주목받고 있다. 모더나 및 바이오엔텍은 암 치료를 위한 신생항원 백신용으로 개발하던 mRNA 플랫폼을 사용해 COVID-19 백신을 성공적으로 개발한 바 있으며, 현재 대규모 제약회사들과 함께 신생항원 암 백신 임상시험을 진행하고 있다. 이런 암 백신 개발을 위해 핵심적인 단계인 환자 맞춤형 신생항원 발굴에 활용될 인공지능 플랫폼이 개발되어 화제다.
우리 대학 바이오및뇌공학과 최정균 교수가 ㈜펜타메딕스와의 공동연구를 통해 개인 맞춤 치료용 암 백신에 사용될 수 있는 신생항원을 예측하는 인공지능(AI) 모델을 개발하고 웹서비스를 구축했다고 17일 밝혔다.
최정균 교수 연구팀은 딥러닝을 이용해 실제로 T 세포 면역반응을 유도할 수 있는 신생항원을 발굴하는 AI 모델을 개발했으며, 연구자들이 손쉽게 활용할 수 있는 웹서비스를 구축해 DeepNeo라는 이름으로 공개했다 (https://deepneo.net).
기존의 신생항원 발굴 방법론은 MHC* 단백질과 결합할 수 있는 돌연변이를 예측하는 데에 한정되어 있었다. 그러나 암 백신이 효과가 있으려면 돌연변이가 MHC와 결합할 뿐만 아니라 그 결합체가 실제로 T 세포 면역반응을 유발할 수 있어야 하는데, 기존 기술로는 그것이 불가능했다. 따라서 현재 암 백신 임상시험들은 이 결합체들이 실제로 면역반응을 자극할 수 있는지를 알 수 없는 상태로 진행되고 있다.
*MHC란 외부에서 들어온 병원균이나 암세포에서 발생한 항원과 결합하여 우리 몸의 면역세포에 제시해 줌으로써 면역반응을 활성화시키는 역할을 하는 단백질을 일컬음
연구팀은 이러한 문제를 해결하기 위해 새로운 개념의 딥러닝 모델을 구축했고, 여러 빅데이터 분석을 통하여 면역성 및 항암 반응성이 뛰어난 신생항원을 발굴할 수 있음을 확인했다. 따라서 이번에 웹서비스 형태로 구축한 방법론은T 세포 반응을 효과적으로 유도할 수 있는 항암 백신 개발에 활용될 수 있다.
우리 대학 바이오및뇌공학과 김정연 박사과정이 제1 저자로 개발한 핵심 알고리즘은 지난 1월 국제 학술지 ‘네이처 지네틱스(Nature Genetics)’ 에 출판됐으며, 이후 ㈜펜타메딕스의 노승재 박사, 방효은 연구원과의 공동연구를 통해 딥러닝 성능이 더욱 개선된 AI 모델이 웹서비스 형태로 개발돼 이번 4월 국제 학술지 ‘핵산 연구(Nucleic Acids Research)’를 통해 공개됐다.
최정균 교수는 “코로나 백신에서 mRNA 플랫폼이 검증된 만큼 이번에 개발된 AI 기술이 암 백신의 상용화에도 도움이 되기를 희망한다.”고 밝혔다. ㈜펜타메딕스 조대연 대표는 “이번 공동연구를 통해 개발된 플랫폼을 적용한 개인맞춤형 암 백신의 사업화에 박차를 가하겠다”고 전했다.
이번 연구는 한국연구재단 기초연구실지원사업의 지원을 받아 수행됐다.
2023.05.17
조회수 5739
-
산업 균주 제작 및 병원균 억제 범용기술 개발
박테리아는 우리 일상에서 김치, 된장, 술 등 식품에 활용되어 왔을 뿐만 아니라 최근에는 대사 공학을 통해 플라스틱, 영양제, 사료, 의약품 등을 생산하는 산업용 세포 공장으로 활약하고 있다. 하지만 유익한 박테리아 외에도 다양한 감염성 질병을 일으키는 폐렴균, 살모넬라균 등 병원균이 있어 대사공학적 기법을 통해 유해한 병원균은 병원성을 억제하거나 사멸을 유도하고, 유익한 산업용 박테리아는 고부가가치 물질을 고효율로 생산할 수 있도록 조작하는 것이 중요하다.
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 그람 음성균과 양성균 모두를 포함한 다양한 박테리아에서 표적 유전자를 효과적으로 억제할 수 있는 신규 sRNA 도구를 개발했다고 10일 밝혔다. 해당 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)'에 4월 24일 字 온라인 게재됐다.
※ 논문명 : Targeted and high-throughput gene knockdown in diverse bacteria using synthetic sRNAs
※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 조재성(한국과학기술원, 현 MIT 박사후연구원, 공동 제1저자), 양동수(한국과학기술원, 현 고려대학교 조교수, 공동 제1저자), Cindy Prabowo (한국과학기술원, 공동저자), Mohammad Ghiffary (한국과학기술원, 공동저자), 한태희 (한국과학기술원, 공동저자), 최경록 (한국과학기술원, 공동저자), 문천우 (한국과학기술원, 공동저자), Hengrui Zhou (한국과학기술원, 공동저자), 류재용 (한국과학기술원, 현 덕성여자대학교 조교수, 공동저자), 김현욱 (한국과학기술원, 공동저자) - 총 11명
sRNA는 대장균에서 표적 유전자를 억제하기 위해 합성 조절하는 효과적인 도구이지만 그동안 대장균과 같은 그람 음성균 외에 산업적으로 유용한 고초균이나 코리네박테리움 같은 그람 양성균에서는 적용이 어려웠다.
이에 생명화학공학과 이상엽 특훈교수 연구팀은 그람 음성균과 양성균 모두를 포함한 다양한 박테리아에서 표적 유전자를 효과적으로 억제할 수 있는 신규 sRNA 도구를 개발했다. 연구팀은 우선 미생물 데이터베이스를 이용해 수천 종의 미생물 유래 sRNA 시스템을 검토했고, 그중 가장 높은 유전자 억제능을 보여준 `고초균(Bacillus subtilis)' 박테리아 유래 sRNA 시스템을 최종 선정했고 이를 ’광범위 미생물 적용 sRNA‘(Broad-Host-Range sRNA, 이하 BHR-sRNA)라고 명명했다.
sRNA와 유사한 시스템으로는 유전자 가위로 잘 알려진 크리스퍼(CRISPR)를 개량한 크리스퍼 간섭(CRISPR interference, CRISPRi) 시스템이 있다. 유전자 가위의 핵심인 Cas9 단백질에 돌연변이를 일으켜 DNA를 자르지 않으면서 유전자 전사 과정만을 억제해 유전자 발현을 억제하는 시스템인데, Cas9 단백질의 분자량이 매우 높아 몇몇 박테리아에서 성장을 저해하는 현상이 보고됐다. 하지만 이번 연구에서 개발한 BHR-sRNA 시스템은 박테리아의 성장에 전혀 영향을 끼치지 않으면서도 CRISPR 간섭과 유사한 유전자 억제능을 보였다.
BHR-sRNA 시스템의 범용성을 검증하기 위해 연구팀은 다양한 그람 음성균 및 그람 양성균 16종을 선정하여 테스트했고, 그중 15종의 박테리아에서 BHR-sRNA 시스템이 성공적으로 작동함을 증명했다. 또한, 10종의 박테리아에서 기존의 대장균 기반 sRNA 시스템보다 유전자 억제능이 뛰어남을 증명했다. 이와 같이 BHR-sRNA 시스템은 다양한 박테리아에서 효과적으로 유전자 발현을 억제할 수 있는 범용 도구임을 입증했다.
최근 점차 심각해져 가는 항생제 내성 병원균 문제를 해결하기 위해, 연구팀은 BHR-sRNA를 이용해 독성인자를 생산하는 유전자를 억제하고, 결과적으로 병원성을 억제하고자 했다. 특히 BHR-sRNA를 활용해 병원 발생 감염균인 표피포도상 구균(Staphylococcus epidermidis)에서 항생제 내성의 원인 중 하나인 바이오필름 형성을 73% 억제할 수 있었고, 폐렴균인 폐렴막대균(Klebsiella pneumoniae)에서 항생제 내성을 58% 약화하는 결과를 보였다. 연구팀은 또한, BHR-sRNA를 산업용 박테리아에 적용해 표적 물질을 고효율로 생산하고자 했다. 특히 폴리아마이드 고분자의 원재료인 발레로락탐(valerolactam), 포도향 첨가제인 메틸안트라닐산(methyl anthranilate), 그리고 청색 천연염료인 인디고이딘(indigoidine)을 최고 농도로 생산할 수 있었다.
이번 연구를 통해 개발한 BHR-sRNA를 활용해 다양한 산업공정으로의 응용이 기대되며, 항생제 내성 병원균 퇴치를 통한 연구에도 활용될 수 있으리라 기대된다. 교신저자인 이상엽 특훈교수는 “기존에는 각각의 박테리아마다 유전자 억제 도구를 새로 개발해야 했는데, 이번 연구를 통해 다양한 박테리아에서 범용으로 작동하는 도구를 개발했다”며 “앞으로 합성생물학과 대사공학, 그리고 병원균 대응연구 발전에 큰 도움이 될 것”이라고 밝혔다.
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제의 지원을 받아 수행됐다.
2023.05.10
조회수 5783
-
천 조분의 1초 까지 정확한 반도체칩용 클럭 개발
최근 반도체 칩의 성능이 급격하게 향상됨에 따라, 보다 정확한 타이밍으로 칩 내의 다양한 회로 블록들의 동작을 동기화(synchronization)시키는 클럭(clock) 신호를 공급하는 기술이 중요해지고 있다.
우리 대학 기계공학과 김정원 교수 연구팀이 레이저를 이용해 반도체 칩 내에서 초저잡음 클럭 신호를 생성하고 분배할 수 있는 기술을 개발했다고 9일 밝혔다.
기존에는 클럭 신호의 정확성이 통상적으로 피코초(1조 분의 1초) 수준이었으나 이번에 개발된 기술을 이용하면 기존의 방식보다 월등한 펨토초(femtosecond, 10-15초, 천 조 분의 1초) 수준의 정확한 타이밍을 가지는 클럭 신호를 칩 내에서 생성하고 분배할 수 있으며, 클럭 분산 과정에서 발생하는 칩 내에서의 발열 또한 획기적으로 줄일 수 있다.
기계공학과 현민지 박사과정 학생이 제1 저자로 참여하고 고려대학교 세종캠퍼스 정하연 교수팀과의 공동연구로 이루어진 이번 논문은 국제학술지 `네이처 커뮤니케이션즈(Nature Communications)' 4월 24일 字에 게재됐다. (논문명: Femtosecond-precision electronic clock distribution in CMOS chips by injecting frequency comb-extracted photocurrent pulses)
고성능의 반도체 칩 내에서 클럭 신호를 분배하기 위해서는 클럭 분배 네트워크(clock distribution network, CDN)에 많은 수의 클럭 드라이버(clock driver)들을 사용해야 하는데, 이로 인해 발열과 전력 소모가 커질 뿐 아니라 클럭 타이밍도 나빠지게 된다. 칩 내의 클럭 타이밍은 무작위적으로 빠르게 변화하는 지터(jitter)와 칩 내의 서로 다른 지점 간의 클럭 도달 시간 차이에 해당하는 스큐(skew)에 의하여 결정되는데, 클럭 드라이버들의 개수가 늘어남에 따라 지터와 스큐 모두 통상 수 피코초 이상으로 커지게 된다.
연구팀은 이 문제를 해결하기 위해 펨토초 이하의 지터를 가지는 광주파수빗(optical frequency comb) 레이저를 마스터 클럭으로 하는 새로운 방식의 클럭 분배 네트워크 기술을 선보였다. 이는 광주파수빗 레이저에서 발생하는 광 펄스들을 고속 광다이오드를 이용해 광전류 펄스(photocurrent pulse)로 변환한 후 반도체 칩 내의 금속 구조 형태로 된 클럭 분배 네트워크를 충전 및 방전하는 과정을 통해 구형파 형태의 클럭 신호를 생성하는 방식이다.
특히 이 기술을 사용하면 클럭 분배 네트워크의 클럭 드라이버들을 제거한 금속 구조만을 통해 칩 내에서 클럭을 분배할 수 있어, 타이밍 성능을 개선할 수 있을 뿐 아니라 칩 내 발열도 획기적으로 줄일 수 있다. 그 결과 지터와 스큐를 기존 대비 1/100 수준인 20펨토초 이하로 낮춘 뛰어난 타이밍 성능을 보일 수 있었으며, 칩내 클럭 분산 과정에서의 전력소모 및 발열 역시 기존 방식 대비 1/100 수준으로 낮출 수 있었다.
김정원 교수는 "현재 아날로그-디지털 변환기와 같은 고속 회로에 매우 낮은 지터의 샘플링 클럭 신호를 공급해 성능을 향상하는 연구를 진행 중ˮ이라고 밝히면서 "3차원 적층 칩과 같은 구조에서 발열을 줄일 수 있을 지에 대한 후속 연구도 계획 중ˮ이라고 밝혔다.
한편 이번 연구는 삼성미래기술육성센터의 지원을 받아 수행됐다.
2023.05.09
조회수 5412
-
전산학부 홍승훈 교수 연구팀, ICLR 2023 학술대회 한국인 최초 최우수논문상 수상
우리 대학 전산학부 홍승훈 교수가 이끄는 연구팀이 지난 5월 1일부터 5월 5일에 열린 기계학습 분야의 최우수 국제학술대회인 ‘표현 학습 국제 학회 2023(International Conference on Learning Representation, 이하 ICLR 2023)’에서 최우수논문상 (Outstanding Paper Award)를 수상했다고 5일 밝혔다.
ICLR 2023은 인공지능 분야의 가장 권위 있는 학회 중 하나로서, 구글 스칼라 h-5 인덱스 기준 기계학습 분야의 1위에 올라있으며, 모든 과학 분야의 출판물 중 9위를 기록하고 있다. 올해 최우수논문상은 전체 1,574편의 논문 중 상위 4편에 주어졌다.
홍 교수팀의 ICLR 최우수논문상 수상은 한국인으로서는 최초이며, 주요 기계학습 학회에서 국내 기관이 주축이 되어 진행한 연구로 최우수논문상을 수상한 최초의 사례이기도 하다.
전산학부 김동균 박사과정(제1 저자), 김진우 박사과정, 조성웅 석사과정과 마이크로소프트 리서치 아시아(Microsoft Research Asia)의 총 루오 박사(Chong Lou)로 구성된 홍승훈 교수 연구팀은 컴퓨터 비전 분야의 핵심 연구 주제인 ‘픽셀 레이블링 문제'를 획기적으로 적은 수의 데이터로 광범위하게 해결할 수 있는 범용적 방법론인 비주얼 토큰 매칭(Visual Token Matching) 기법을 제안해 최우수논문상을 받았다.
픽셀 레이블링은 물체 검출, 물체 분할, 자세 추정, 깊이 추정, 3차원 복원 등 컴퓨터 비전 분야의 거의 모든 핵심 문제를 광범위하게 아우르는 개념이다. 최근 10년간 신경망 기반의 기계학습 방법론이 적용되며 픽셀 레이블링의 다양한 세부 문제에서 괄목할만한 진전이 있었으나, 이러한 방법들은 수십만 개 이상의 방대한 학습 데이터를 요구하는 한계가 있었다.
홍승훈 교수 연구팀은 모든 종류의 픽셀 레이블링 문제에 대해 수십 개 이내의 적은 데이터로도 학습과 추론이 가능한 범용적인 퓨샷 학습 기법을 개발했고, 수많은 픽셀 레이블링 문제에서 기존 방법 대비 0.01% 이내의 데이터로도 비슷하거나 우수한 성능을 낼 수 있음을 입증했다.
홍 교수는 이번 연구를 통해 의료 영상과 같이 학습 데이터 수집이 병목이 되는 다양한 도메인에서 컴퓨터 비전 기술을 적용하는데 돌파구가 되기를 기대한다고 평가했다.
이번 연구를 주도한 김동균 박사과정은 적은 수의 데이터로 학습할 수 있는 범용적 기계학습 방법론을 계속 연구해 왔으며, 이번 연구의 이론적 토대가 되는 연구를 지난 ICLR에 출판한 바 있다. 김동균 박사과정은 이번 연구로 삼성 휴먼테크 논문대상에서 은상을 수상하기도 했다.
전산학부 홍승훈 교수는 "상을 받게 되어 영광이고, 이번 수상이 국내 기계학습 연구자들에게 자신감이 되어 한국에서 더 많은 도전적인 연구들이 나오는 데 도움이 된다면 기쁠 것 같다”라고 소감을 밝혔다.
2023.05.08
조회수 4681
-
염증없이 체내·외 측정 가능한 전자 신소재 개발
생체전자 의료기기는 체내에서 발생하는 신호를 읽어 생물학적 활동을 감지하거나, 조직을 자극해 질병 등을 치료하는 데 사용된다. 하지만 의료기기에 사용되는 전극 물질은 딱딱한 물성을 가지고 있어 체내에 염증반응을 일으키고 조직에 다량의 손상으로 이어질 수 있다. 따라서 조직과 같이 부드러운 성질을 가지면서도 전도성을 띠는 하이드로겔과 같은 연성 물질에 생체적합성이 높은 전도성 고분자를 체내 전극으로 사용하는 연구들이 활발하게 진행되고 있다.
우리 대학 신소재공학과 강지형 교수와 바이오및뇌공학과 박성준 교수 공동연구팀이 기존에 없었던 고전도성, 유사 조직 접착성 하이드로겔이란 신소재를 개발해 고성능 생체전자 기기를 구현했다고 4일 밝혔다.
대부분 전기 전도도가 높을수록 전도성 도메인들의 결정성이 높아지는 원리에 의해, 전도성이 높은 하이드로겔은 딱딱해지고, 부드러운 하이드로겔은 전도성이 낮을 수밖에 없다는 한계를 가진다. 이에 따라 전도성 고분자를 사용하는 하이드로겔 중, 전기 전도도가 높으면서도(10 S/cm 이상) 부드러운 물성(100 kPa 이하)을 가진 하이드로겔은 지금까지 보고된 바 없었다.
강지형 교수 연구팀은 기존에 없었던 고전도성, 유사 조직 물성 하이드로겔을 개발했다. 이 하이드로겔은 보고된 전도성 고분자 하이드로겔 중 가장 높은 전기 전도도(247 S/cm)를 띄며, 조직과 비슷한 물성(탄성율 = 60 kPa, 파괴변형률 = 410%)을 갖는다. 또한, 본 재료는 지속적인 움직임과 팽창, 수축이 있는 심장, 위와 같은 조직에서 안정적으로 기기가 작동하기 위해 필수조건인 조직에 쉽게 접착되는 장점을 가지고 있다.
공동연구팀은 원하는 생체 조직에 맞게 조정하고 그 형태에 맞추는 주형의 그물 구조에 따라 높은 질서도를 가지는 고분자 주형 네트워크를 도입했다.
따라서 주형에 맞추어 형성된 그물 네트워크는 기존 네트워크 대비 100배 이상 높은 전기 전도도를 보이며, 동시에 주형 고분자의 부드러운 특성 때문에 조직과 비슷한 물성을 지니게 된다. 변형에도 저항이 바뀌지 않아 생체전극으로서 최적의 성능을 갖는다.
또한 연구팀은 개발한 하이드로겔을 전극을 기반으로 한 높은 전기 전도도를 가진 다양한 고성능 생체전자 기기를 제작, 그 기능성을 검증했다. 높은 전기 전도도를 가진 특성으로 좌골신경 자극을 대상으로 하는 디바이스의 경우, 매우 낮은 전압(40 mV)에서 다리 근육의 움직임을 성공적으로 유도할 수 있었다. 또한 심전도 측정(ECG)을 위한 디바이스의 경우에도 매우 높은 신호 대 잡음 비(61 dB)로 신호를 측정하는 데 성공함으로써, 초고품질 생체 신호 측정을 위한 연성 기기 개발 가능성을 입증하였다.
이번 연구를 주도한 강지형 교수는 "이번 연구는 고전도성을 갖고 생체조직과 유사한 기계적 물성을 갖는 하이드로겔 개발을 위한 합성 방향을 새롭게 제시했다는 점에서 의미가 있다고 하면서, "이번에 개발된 전도성 하이드로겔은 급속도로 성장하고 있는 전자약 시장에 게임 체인저가 될 것으로 기대된다고 말했다.
우리 대학 신소재공학과 정주은 박사과정과 바이오및뇌공학과 성창훈 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션스 (Nature Communications)’에 4월 18일 게재됐다. (논문명: Highly conductive tissue-like hydrogel interface through template-directed assembly)
한편 이번 연구는 한국연구재단의 나노소재기술개발 미래기술연구실 사업을 받아 수행됐다.
2023.05.04
조회수 6567
-
다결정 및 단결정 재료 극한 변형 메커니즘 규명
우리 대학 항공우주공학과 연구팀 (익스트림역학 및 멀티피직스 연구실; https://continuum.kaist.ac.kr)이 미국 로스앨러모스국립연구소, 오크리지국립연구소 및 위스콘신대학과의 공동연구를 통해 초고온 및 초고압용 체심입방 결정재료의 극한 변형 메커니즘을 실험 및 이론적으로 규명했다.
주기율표의 Group V 및 Group VI에 속한 체심입방 금속재료 (그림 1-a)는 높은 용융점, 우수한 기계 및 내화학적 성능 및 가공성으로 인해 항공우주, 원자력 및 초전도체 등 다양한 극한 환경에서 주로 사용돼왔으며 최근엔 의료기기용 재료로도 큰 주목을 받고 있다.
체심입방 금속재료의 극한 환경 하의 변형 및 흐름에 관한 예측은 원자미끄러짐 기반 비탄성 변형 메커니즘 특유의 물리 및 수학적 복잡성으로 인해, 대부분 경험적 방법론에 의존해왔다. 또한 기존에 제시된 대부분의 이론 모델들은 단결정 또는 다결정 상태의 극한 거동을 부분적으로만 예측할 수 있었지만, 본 연구에서는 체심입방 단결정 및 다결정 재료의 극한 거동을 다양한 온도 및 속도 조건에서 동시에 설명할 수 있는 연속체역학 기반 이론 모델을 제시하였다. 연구팀은 새롭게 제시된 이론 모델을 통해 대표적 체심입방금속재료인 단결정 및 다결정 탄탈럼의 극한의 기계적 변형, 전위 결함 및 미세 구조 발달을 정확하게 예측하고 (그림 1-b 및 1-c) 이를 로스앨러모스국립연구소가 보유한 Los Alamos Neutron Science Center (LANSCE)의 중성자 디프랙션 장비를 통해 실험적으로 검증했다 (그림 1-d). 또한 기존의 경험론적 이론 모델에서는 설명할 수 없었던 체심입방 단결정 구조체에서 주로 발견되는 원자 미끄러짐의 불안정성을 수리적으로 규명하였으며, 이는 향후 극한 환경용 재료 및 구조체 설계에 적극 활용될 수 있을 것으로 기대되고 있다.
본 연구 결과는 이론 및 실험에 관한 국제협력을 통해 얻어졌으며, 우리학교 항공우주공학과의 조한솔 교수 연구실과 위스콘신-매디슨 대학 기계공학과의 커트 브롱크홀스트(Curt Bronkhorst) 교수 연구실 및 오크리지국립연구소에서 이론 정립 및 단결정 및 다결정 거동 경계값 문제에 관한 수치 계산을 수행하고, 로스앨러모스 국립연구소에서 검증 실험을 수행했다.
우리 대학 항공우주공학과의 이승현 박사과정 학생이 제1 저자로 참여한 이번 연구는 고체 및 응용역학 분야 최상위 학술지인 인터내셔널 저널 오브 플라스티시티 (Int. Journal of Plasticity) 에 연속 출간됐다.
https://doi.org/10.1016/j.ijplas.2023.103529
https://doi.org/10.1016/j.ijplas.2020.102903
https://arxiv.org/abs/2303.06743
한편 본 연구에 참여한 박사과정 이승현 학생은 로스앨러모스국립연구소의 여름 프로그램에 지원 및 선정돼 이번 6월 로스앨러모스국립연구소의 이론부에 방문하여 후속 연구를 진행할 예정이다.
본 연구는 한국연구재단 신진과제 (2020R1C1C101324813), 기초연구실 (2021R1A4A103278312) 그리고 미국립과학재단 (CMMI 2118399)의 지원을 통해 수행됐다.
2023.05.02
조회수 5054
-
강수 관측 오차범위 42.5% 줄인 알고리즘 개발
강수량의 정확한 파악은 지구의 물 순환을 이해하고 수자원과 재해 대응을 위해 중요하다. 강수량 추정을 위한 알고리즘에는 다양한 방법들이 제안되어 왔으며, 최근에는 기계학습을 이용한 방법들이 많이 제안되고 있다.
우리 대학 문술미래전략대학원(건설및환경공학과 및 녹색성장지속가능대학원 겸임) 김형준 교수와 도쿄대 등으로 구성된 국제 공동연구팀이 인공위성에 탑재된 마이크로파 라디오미터의 관측값을 이용해 지상 강수량을 추정하는 새로운 기계학습 방법을 제안했다고 25일 밝혔다. 연구팀은 기존의 방법과 비교해 전 강수량에 대해 오차(RMSE)를 최소 15.9%에서 최대 42.5%까지 줄이는 데 성공했다.
단순한 데이터 주도(data-driven)모델은 대량의 훈련 데이터가 필요하고 물리적인 일관성이 보장되지 않으며 결과의 원인 분석이 어렵다는 등의 문제가 있었다. 연구팀은 이번 연구에서 위성 강수량 추정에 대한 분야 지식을 명시적으로 포함함으로써 학습 모델 내의 상호 의존적인 지식 교환을 구현했다. 구체적으로, 멀티태스크 학습(multitask learning)이라는 심층 학습 기법을 사용해 강수 여부를 인식하는 분류 모델과 강수 강도를 추정하는 회귀 모델을 통합하고 동시에 학습시켰다.
이번 연구에서 제안한 기계학습 모델에는 이번에 포함된 메커니즘 외에도 다양한 물리적 메커니즘을 포함할 수 있다. 예를 들어, 비 또는 눈, 진눈깨비 등 강수 종류의 분류 및 상승 기류 또는 층상 구름 유형 등 강수를 일으키는 구름 유형의 분류를 포함함으로써 앞으로 추정의 정확도가 더욱 향상될 것으로 기대된다.
김형준 교수의 이번 연구 결과는 국제 학술지 ‘지구물리 연구 레터(Geophysical Research Letters)’에 지난 4월 16일 출판됐다. (논문명: Multi-Task Learning for Simultaneous Retrievals of Passive Microwave Precipitation Estimates and Rain/No-Rain Classification; doi:10.1029/2022GL102283)
한편 이번 연구는 한국연구재단 해외우수과학자유치사업(BP+)와 정보통신기획평가원 인공지능대학원지원(한국과학기술원)지원을 받아 수행됐다.
2023.04.25
조회수 5379