-
단백질간 '소통' 알츠하이머 독성 완화 규명..치료 길 열어
전 세계 치매 환자는 약 5,000만 명으로 추산되며, 이 중 약 70% 이상을 차지하는 알츠하이머병은 대표적인 신경 퇴행성 뇌질환이다. 한국 연구진이 알츠하이머병의 두 핵심 병리 단백질인 타우와 아밀로이드 베타가 실제로 직접 소통하며 독성을 조절한다는 사실을 세계 최초로 분자 수준에서 규명했다. 이번 성과는 알츠하이머병의 병태생리를 새롭게 바라보게 하는 한편, 질환 조기 진단을 위한 바이오마커 발굴과 신경퇴행성 뇌질환 치료제 개발에 중요한 단서를 제공할 것으로 기대된다.
우리 대학 화학과 임미희 교수(금속신경단백질연구단 단장) 연구팀이 국가과학기술연구회(NST, 이사장 김영식) 산하 한국기초과학지원연구원(KBSI, 원장 양성광) 첨단바이오의약연구부 이영호 박사 연구팀과 공동연구, 한국과학기술연구원(KIST, 원장 오상록) 뇌과학연구소 김윤경 박사, 임성수 박사 연구 참여로, 알츠하이머병의 주요 병리 단백질 중 하나인 타우의 미세소관 결합 영역(microtubule-binding domain)이 아밀로이드 베타와 직접적인 상호작용(타우-아밀로이드 베타 커뮤니케이션)을 통해 응집 경로를 변화시키고, 세포 독성을 완화할 수 있음을 분자 수준에서 규명했다고 24일 밝혔다.
알츠하이머병은 병리학적으로 신경세포 안에서 영양분과 신호물질을 운반하는 수송로 역할을 하는 단백질인 ‘타우’의 응집으로 형성된 ‘신경섬유 다발’과 뇌 속 신경세포 막에 뇌 발달, 세포 간 신호 전달, 신경세포 회복 등에 관여하는 아밀로이드 전구 단백질이 어떤 효소에 의해 비정상적으로 잘린 아밀로이드 베타 조각이 뭉쳐있는 ‘아밀로이드 베타 응집체’로 ‘아밀로이드 플라크(노인성 반점)’ 형태로 세포 내부와 외부에 각각 축적되는 특징을 보인다.
두 단백질은 공간적으로 분리된 위치에서 병적 구조물을 형성하지만, 타우와 아밀로이드 베타가 세포 내·외에 같이 존재하며 상호작용 가능성이 제시된 바 있다. 그러나 두 단백질의 직접적인 상호작용이 질환의 발병과 진행에 미치는 영향에 대한 분자 수준의 이해가 아직 명확히 밝혀지지 않은 상태다.
공동연구팀은 타우 단백질이 신경세포 안에서 미세소관(세포 내 수송로)에 붙는 구조(K18, R1-R4, PHF6*, PHF6) 중, K18, R2, R3이 아밀로이드 베타와 결합해 ‘타우–아밀로이드 베타 복합체(이종 복합체)’를 만들게 된다. 이 작용이 중요한 이유는 아밀로이드 베타가 원래대로라면 독성이 강한 딱딱한 섬유(아밀로이드 피브릴)로 쌓이게 되지만, 타우의 특정 부분이 붙으면 아밀로이드 베타가 독성이 낮고 덜 단단한 형태의 응집체 형성 경로로 전환할 수 있음을 밝혀냈다.
특히, 이들 타우 단백질의 반복 구조는 질환 발병과 연결되는 아밀로이드 응집이 처음 뭉치기 시작하는 과정(핵 형성 단계)을 지연시키고, 또한 질환 진행에 관계되는 아밀로이드 베타의 응집 속도와 구조적 형태를 동시에 변화시킨다. 그 결과, 뇌 세포 내·외 환경 모두에서 아밀로이드 베타가 일으키는 독성 수준을 뚜렷하게 감소시켰다.
이번 연구에서는 분광학, 질량분석, 등온 적정 열량측정법, 핵자기공명 등 정밀한 분석 기법과 함께 세포 기반 독성 평가를 결합해, 타우–아밀로이드 간 상호작용의 구조적, 열역학적, 기능적 특성을 종합적으로 분석했다.
그 결과, 타우 단백질의 특정부분(미세소관 결합 반복 구조)은 물과 잘 섞이는 성질(친수성)과 물과 잘 안 섞이는 성질(소수성)을 동시에 가지고 있고 이 두 성질의 균형이 잘 맞을 때, 타우는 아밀로이드 베타를 더 잘 결합하게 된다. 즉 타우의 성질이 아밀로이드 베타와의 결합력·응집 경로·독성 조절 능력을 결정짓는 핵심 요인임을 입증했다.
KBSI 이영호 박사는 “이번 연구는 난치성 신경퇴행성 질환인 치매의 발병 및 진행에 관한 새로운 분자 메커니즘을 규명했으며 특히, 분자 간 상호작용과 단백질 응집을 중심으로 한 다학제적 융합연구는 알츠하이머병과 파킨슨병 사이의 질환 간 상호작용은 물론, 치매, 당뇨병, 암 등 여러 질환 사이의 상호 연관성을 밝히는 데 중추적 역할을 할 것으로 기대된다”라고 밝혔다.
우리 대학 임미희 교수는 “타우 단백질이 단순히 병리 생성에 기여하는 것이 아니라, 특정 미세소관 결합 반복 구조를 통해 아밀로이드 베타의 응집과 독성을 적극적으로 완화할 수 있는 분자적 기능을 수행한다는 점에서 기존의 병리적 이해에 새로운 전환점을 제시했다”라며, “이번 연구는 알츠하이머병뿐만 아니라 다양한 단백질 응집 기반 신경 퇴행성 뇌질환에서 치료 표적으로 작용할 수 있는 새로운 분자 모티프를 발굴했다는 데 의의가 있다”라고 말했다.
이번 연구는 KAIST 화학과 김민근 박사가 제1 저자로 국제 저명 학술지인 `네이처 케미컬 바이올로지(Nature Chemical Biology, Impact factor: 13.7, 화학 분야 상위 3.8%)'에 8월 22일 게재됐다.
※논문명: Interactions with tau’s microtubule-binding repeats modulate amyloid-β aggregation and toxicity
※DOI: 10.1038/s41589-025-01987-0
한편, 이번 연구는 한국연구재단의 기초연구사업(리더연구 및 중견연구), 중견연구자지원사업 및 세종과학펠로우십과 KBSI와 KIST 지원을 받아 진행됐다.
2025.08.25
조회수 2011
-
기계공학과 구승범 교수 연구팀, 제30회 국제생체역학회(ISB) 학술대회 Clinical Biomechanics Award 수상
기계공학과 구승범 교수 연구팀이 지난 7월 스웨덴 스톡홀름에서 개최된 제30회 국제생체역학회(International Society of Biomechanics, ISB) 학술대회에서 Clinical Biomechanics Award를 수상했다. 제1 저자인 박사과정 오정석 군이 Plenary 강연을 했다. 본 연구는 삼성서울병원 정형외과 왕준호 교수 연구팀과의 공동 연구로 수행됐다.
이번 연구에서는 정상 성인 10명과 전방십자인대(ACL) 파열 후 전외측인대(ALL)를 포함한 재건술을 받은 환자 10명을 대상으로, 고속 이중 평면 엑스선 영상과 3차원 관절 운동 분석을 통해 보행 시 무릎 관절의 운동을 정밀하게 측정하였다. 분석 결과, 환자군에서는 정상군에 비해 과도한 전방 이동 및 내측 회전 운동이 나타났으며, 이는 수술 이후에도 정상적인 관절 접촉 운동이 완전히 회복되지 않았음을 시사한다. 이러한 결과는 해당 환자군에서 빈번히 보고되는 조기 슬관절 골관절염의 발생 메커니즘을 설명할 수 있는 중요한 근거를 제시한 것이다.
국제생체역학회는 2년마다 개최되며, 60년 이상의 역사를 지닌 생체역학 분야 세계 최대 규모의 학술대회다. 이번 제30회 대회에는 전 세계 46개국에서 약 1,600명의 연구자가 참가했고, 총 1,400여 편의 연구가 발표됐다. Clinical Biomechanics Award는 제출된 초록 중 상위 평가를 받은 5편에 대해 전체 논문 제출을 요청한 후, 학문적 우수성과 임상적 영향력을 기준으로 심사하여 최종 1편에 수여되는 영예로운 상이다. 수상 논문은 Clinical Biomechanics 저널에 게재되며, 수상자에게는 상금과 함께 학회 기간 중 Plenary 강연 기회가 제공된다.
구승범 교수팀과 왕준호 교수팀은 2019년부터 2023년까지 삼성미래기술육성사업의 지원을 받아, 트레드밀 위를 걷는 환자의 무릎 관절을 실시간으로 추적하고 고속 이중 평면 엑스선 영상을 연속 촬영할 수 있는 시스템을 공동 개발했다. 이 시스템은 관절의 3차원 운동을 정밀하게 재구성하는 자체 소프트웨어와 함께 식품의약품안전처의 임상시험 승인을 거쳐 삼성서울병원에 설치되었으며, 슬관절 인대 손상 및 수술 환자들의 비정상적 관절 운동 양상을 정량적으로 분석하는 데 활용되고 있다.
또한, 본 연구의 제1저자인 박사과정 오정석 군은 본 학술대회에서 David Winter Young Investigator Award의 최종 후보자(Finalist) 5인 중 한 명으로 선정돼, 해당 어워드 세션에서 발표를 진행했다. 본 상은 젊은 연구자들의 연구 역량을 격려하고 생체역학 분야의 미래를 이끌 인재를 발굴하기 위해 제정된 것으로, 세계 각국에서 선발된 우수한 박사과정 학생들이 치열한 경쟁을 펼치는 명예로운 무대다.
2025.08.07
조회수 1683
-
에탄이 온실가스 줄이고, 플라스틱도 만든다고요?
메탄은 이산화탄소(CO₂)보다 약 25배 강한 온실가스로, 기후변화 대응에서 가장 시급한 감축 대상 중 하나로 천연가스, 매립지 가스, 축산·폐수 처리 등 다양한 배출원에서 종종 에탄과 혼합된 형태로 존재한다. 천연가스 중 에탄도 큰 비중을 차지하며, 메탄 다음으로 최대 15%까지 포함돼 있다. 우리 연구진이 에탄이 이런 메탄을 에너지원으로 사용하는 ‘편성 메탄산화균’의 대사에 영향을 줘서 메탄을 저감시키고 바이오플라스틱 생산에 활용할 가능성을 제시했다.
우리 대학 건설및환경공학과 명재욱 교수 연구팀이 미국 스탠퍼드 대학교와의 공동연구를 통해, 천연가스의 주요 부성분인 에탄(C2H6)이 ‘편성 메탄산화균(Methylosinus trichosporium OB3b)’의 핵심 대사에 미치는 영향을 규명했다고 7일 밝혔다.
메탄산화균은 산소가 있는 조건에서 메탄을 에너지원으로 사용해 생장할 수 있는 세균으로, 이 중 ‘편성(obligate) 메탄산화균’은 메탄이나 메탄올과 같은 C1 화합물만을 성장 기질로 활용하는 것이 특징이다. 지금까지 이러한 편성 메탄산화균이 비(非)성장 기질인 에탄에 어떻게 반응하는지에 대한 연구는 이뤄지지 않았다.
연구팀은 이번 연구에서는 C2 기질인 에탄이 성장 기질로 사용되지 않음에도 불구하고, 편성 메탄산화균의 메탄 산화, 세포 성장, 생분해성 고분자인 폴리하이드록시부티레이트(Polyhydroxybutyrate, 이하 PHB) 합성 등 주요 대사 경로에 유의미한 영향을 미친다는 사실을 밝혀냈다.
연구팀이 다양한 메탄 및 산소 농도 조건에서 에탄을 첨가해 메탄산화균을 배양한 결과, ▲세포 성장 억제 ▲메탄 소비 감소 ▲PHB 합성 증가의 세 가지 대사 반응이 일관되게 나타났으며, 이러한 변화는 에탄 농도가 증가할수록 더욱 두드려졌다.
이번 연구에 따르면, 에탄은 단독으로는 메탄산화균에서 반응하지 않으며, 세균 역시 에탄만 주어졌을 때는 성장하지 않는다. 그러나 메탄과 함께 존재할 경우, 메탄을 산화하는 핵심 효소 ‘입자상 메탄모노옥시게네이스(pMMO)’를 통해 에탄이 함께 산화되는 ‘동시 산화(co-oxidation)’현상이 관찰됐다.
에탄이 산화되는 과정에서 생성되는 중간 대사산물 ‘아세테이트(acetate)’는 메탄산화균의 세포 성장을 억제하는 동시에, PHB(Polyhydroxybutyrate) 생산을 촉진하는 것으로 나타났다. PHB는 생분해성 바이오플라스틱의 원료로 주목받는 고분자 물질이다.
이러한 작용은 균이 처한 영양 상태에 따라 상반된 양상을 보인다. 영양이 충분한 상태에서는 에탄이 세포 성장에 부정적인 영향을 미치지만, 영양 불균형 상태에서는 오히려 PHB 축적을 유도해 긍정적인 효과를 나타낸다.
한편, 에탄을 첨가했을 때 메탄의 소비량은 감소했지만, 메탄 분해 효소인 pMMO를 구성하는 pmoA 유전자의 발현량에는 유의미한 변화가 없었다. 이는 에탄이 유전자의 전사(transcription) 수준에서는 영향을 미치지 않으며, 대신 효소의 실제 작동 능력(활성 수준)이나 전사 이후 조절 단계에서 영향을 준다는 사실을 입증한다.
연구팀은 에탄이 메탄산화균의 대사 흐름을 간접적으로 조절하는 조절자 역할을 하며, 메탄과 함께 있을 때 의도치 않은 방식으로 세포 성장과 PHB 생산에 영향을 미친다고 분석했다.
명재욱 교수는 “이번 연구는 ‘편성 메탄산화균’이 단일 기질 환경이 아닌 에탄과의 복합 기질 조건에서 어떻게 대사적으로 반응하는지를 체계적으로 규명한 최초의 사례”라며, “에탄과 같은 비성장 기질이 메탄 대사와 생분해성 고분자 생산에 미치는 영향을 밝힘으로써, 생물학적 메탄 저감 기술뿐 아니라 바이오플라스틱 생산에도 새로운 가능성을 제시한다”라고 전했다.
건설및환경공학과 박사과정 박선호 학생이 제1 저자인 이번 연구는 환경미생물학 및 생명공학 분야의 권위 있는 미국미생물학회(American Society for Microbiology) 학회지인 국제 학술지 응용 환경미생물학(Applied and Environmental Microbiology)에 7월 10일 자로 게재됐다.
※ 논문명: Non-growth substrate ethane perturbs core methanotrophy in obligate methanotroph Methylosinus trichosporium OB3b upon nutrient availability
(저자 정보 : 박선호(KAIST, 제1 저자), Chungheon Shin(Standford University), Craig S. Criddle (Standford University), 명재욱(KAIST, 교신저자) 총 4명)
※ DOI: 10.1128/aem.00969-25
한편, 이번 연구는 한국연구재단, 국토교통부, 해양수산부의 지원을 받아 수행됐다.
2025.08.07
조회수 2652
-
스스로 물체를 집고, 걷는 '실시간 프로그래밍 로봇 시트' 개발
접힘 구조는 로봇 설계에서 직관적이면서도 효율적인 형상 변형 메커니즘으로 활용되며, 우주·항공 로봇, 유연 로봇, 접이식 그리퍼(손) 등 다양한 응용이 시도되고 있다. 그러나 기존의 접힘 메커니즘은 접는 위치(hinge)나 방향이 사전에 고정돼 있어, 환경과 작업이 바뀔 때마다 구조를 새로 설계·제작해야 하는 한계가 있었다. 한국 연구진이 실시간으로 현장에 따라 프로그래밍하는‘접이식 로봇 시트 기술’을 개발해 로봇의 형태 변화 능력을 획기적으로 향상함으로써, 향후 로봇 공학 분야에 새로운 가능성을 열어줄 것으로 기대된다.
우리 대학 기계공학과 김정 교수, 박인규 교수 공동 연구팀이 형상을 실시간으로 프로그래밍할 수 있는 로봇 시트 원천 기술(field-programmable robotic folding sheet)을 개발했다고 6일 밝혔다.
이번 기술은 ‘필드 프로그래밍(field-programmability)’이라는 개념을 접이식 구조에 성공적으로 도입한 사례로, ‘접힘을 어디서, 어느 방향으로, 얼마나 크게 할지’라는 사용자의 명령을 소재 형상에 실시간으로 반영할 수 있는 소재 기술 및 프로그래밍 방법론을 통합적으로 제안했다.
해당 ‘로봇 시트’는 얇고 유연한 고분자 기판 내에 미세 금속 저항 네트워크가 내장된 구조로, 각 금속 저항이 히터이자 온도 센서 역할을 동시에 수행해, 별도의 외부 장치 없이도 시트의 접힘 상태를 실시간으로 감지하고 제어한다.
또한 유전 알고리즘(genetic algorithm) 및 심층 신경망(deep neural network)을 결합한 소프트웨어를 통해 사용자가 원하는 접힘 위치와 방향, 강도를 소프트웨어적으로 입력하면, 스스로 가열·냉각을 반복하며 정확한 형상을 만들어낸다.
특히, 온도 분포에 대한 폐루프 제어(closed-loop control)를 적용해 실시간 접힘 정밀성을 향상하고, 환경 변화로 인한 영향을 보정했으며, 열 변형 기반 접힘 기술이 지니던 느린 반응 속도 문제도 개선했다.
이러한 형상의 실시간 프로그래밍은 복잡한 하드웨어 재설계 없이도 다양한 로봇의 기능성을 즉석에서 구현할 수 있게 했다는 데에 의미가 있다.
실제로 연구팀은 단일 소재로 다양한 물체 형상에 맞춰 어떻게 잡을지 결정하는 파지(grasping) 전략을 바꿔가며 적용할 수 있는 적응형 로봇 손(그리퍼)를 구현했고, 동일한 ‘로봇 시트(얇고 유연한 형태의 로봇)’를 바닥에 두어 보행하거나 기어가게 하는 등 생체 모방적 이동 전략을 선보였다. 이를 통해 환경 변화에 따라 스스로 형태를 바꾸는 환경 적응형 자율 로봇으로의 확장 가능성도 제시했다.
김정 교수는 “이번 연구는 자기 몸을 바꾸면서 똑똑하게 움직이는 기술 즉, 형상 자체가 지능이 되는‘형상 지능(morphological intelligence)’구현에 한 걸음 다가간 사례로 평가된다. 향후 더 높은 하중 지지와 빠른 냉각을 위한 소재·구조 개선, 배선 없는 일체형 전극에도 다양한 형태·크기로의 확장 등을 통해 재난 현장 대응 로봇, 맞춤형 의료 보조기기, 우주 탐사 장비 등 다양한 분야에 응용될 수 있는 차세대 피지컬 AI 플랫폼으로 발전시킬 계획이다”라고 말했다.
우리 대학 박현규 박사(現 삼성전자 삼성종합기술원)와 정용록 교수(現 경북대학교)가 공동 제1 저자인 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’에 2025년 8월 온라인판에 출판됐다.
※논문명: Field-programmable robotic folding sheet
※DOI: https://www.nature.com/articles/s41467-025-61838-3
한편 이번 연구는 한국연구재단(과학기술정보통신부)의 지원을 받아 수행됐다.
2025.08.06
조회수 3108
-
숨겨진 다자 간 관계를 추적·복원하는 AI '마리오' 개발
회의실에 여러 사람이 동시에 모여 회의하는 경우처럼, 다수의 객체가 동시에 상호작용하는 고차원 상호작용(higher-order interaction)은 다양한 분야에서 발생하며, 실세계의 복잡한 관계를 담고 있다. 하지만 기술적 제약으로 인해 많은 분야에서는 주로 개별 쌍 간의 저차원 정보만 수집돼, 전체 맥락이 손실되고 활용에 제약이 따랐다. KAIST 연구진이 이처럼 불완전한 정보만으로도 고차원 상호작용을 정밀하게 복원*하는 AI ‘마리오(MARIOH)’를 개발하며, 소셜 네트워크, 뇌과학, 생명과학 등 다양한 분야에서 혁신적 분석 가능성을 열었다.
*복원: 사라지거나 관측되지 않은 원래 구조를 추정/재구성하는 것
우리 대학 김재철AI대학원의 신기정 교수 연구팀이 저차원 상호작용 정보만으로 고차원 상호작용 구조를 높은 정확도로 복원할 수 있는 인공지능 기술인 ‘마리오(이하 MARIOH, Multiplicity-Aware Hypergraph Reconstruction)’를 개발했다고 5일 밝혔다.
고차원 상호작용 복원이 어려운 이유는 동일한 저차원 상호작용 구조로부터 파생될 수 있는 고차원 상호작용의 가능성이 무수히 많기 때문이다.
연구팀이 개발한 MARIOH의 핵심 아이디어는 저차원 상호작용의 다중도(multiplicity) 정보를 활용해, 해당 구조로부터 파생될 수 있는 고차원 상호작용의 후보 수를 획기적으로 줄이는 데 있다.
더불어, 효율적인 탐색 기법을 통해 유망한 상호작용 후보를 신속하게 식별하고, 다중도 기반의 심층 학습 기술을 활용해 각 후보가 실제 고차원 상호작용일 가능성을 정확하게 예측한다.
연구팀은 10개의 다양한 실세계 데이터 셋을 대상으로 한 실험 결과, MARIOH는 기존 기술 대비 최대 74% 높은 정확도로 고차원 상호작용을 복원하는 데 성공했다.
예를 들어, 논문 공저 관계 데이터(출처: DBLP)에서는 98% 이상의 복원 정확도를 달성해, 약 86% 수준에 머무는 기존 기술을 크게 앞질렀다. 또한, 복원된 고차원 구조를 활용할 경우, 예측, 분류 등 다양한 작업에서의 성능이 향상되는 것으로 나타났다.
신기정 교수는 “MARIOH는 단순화된 연결 정보 정보에만 의존하던 기존 접근에서 벗어나, 실제 세계의 복잡한 연결 관계를 정밀하게 활용할 가능성을 열어 준다”라며, “단체 대화나 협업 네트워크를 다루는 소셜 네트워크 분석, 단백질 복합체나 유전자 간 상호작용을 분석하는 생명과학, 다중 뇌 영역 간 동시 활동을 추적하는 뇌과학 등 다양한 분야에서 폭넓게 활용될 수 있을 것”이라고 밝혔다.
김재철AI대학원의 이규한 석박통합과정(現 GraphAI 소프트웨어 엔지니어)과 이건 석박사통합과정, 신기정 교수가 저자로 참여한 이번 연구는 지난 5월에 홍콩에서 열린 제41회 IEEE 국제 데이터공학 학회(IEEE International Conference on Data Engineering, IEEE ICDE)에서 발표됐다.
※논문명: MARIOH: Multiplicity-Aware Hypergraph Reconstruction
※DOI: https://doi.ieeecomputersociety.org/10.1109/ICDE65448.2025.00233
한편, 이번 연구는 정보통신기획평가원의 지원을 받은 ‘EntireDB2AI: 전체 관계형 데이터베이스를 종합적으로 활용하는 심층 표현 학습 및 예측 원천기술과 소프트웨어 개발’ 과제와 한국연구재단의 지원을 받은 ‘그래프 파운데이션 모델: 다양한 모달리티 및 도메인에 적용 가능한 그래프 기반 기계 학습’과제의 성과다.
2025.08.05
조회수 2341
-
주변 빛에너지로 24시간 건강 모니터링이 가능하다고?
심박수, 혈중산소포화도, 땀 성분 분석 등 지속적인 건강 모니터링을 위한 의료용 웨어러블 기기의 소형화와 경량화는 여전히 큰 도전 과제다. 특히 광학 센서는 LED 구동과 무선 전송에 많은 전력을 소모해 무겁고 부피가 큰 배터리를 필요로 한다. 이런 한계를 극복하기 위해 우리 연구진은 주변 빛을 에너지원으로 활용하고, 전력 상황에 따라 최적화된 관리를 통해 24시간 연속 측정이 가능한 차세대 웨어러블 플랫폼을 개발했다.
우리 대학 전기및전자공학부 권경하 교수팀이 미국 노스웨스턴대학교 박찬호 박사팀과 공동연구를 통해, 주변 빛을 활용해 배터리 전력 부담을 줄인 적응형 무선 웨어러블 플랫폼을 개발했다고 30일 밝혔다.
의료용 웨어러블 기기의 배터리 문제를 해결하기 위해, 권경하 교수 연구팀은 주변의 자연광을 에너지원으로 활용하는 혁신적인 플랫폼을 개발했다. 이 플랫폼은 세 가지 상호 보완적인 빛 에너지 기술을 통합한 것이 특징이다.
첫 번째 핵심 기술인 ‘광 측정 방식(Photometric Method)’은 주변 광원의 세기에 따라 LED 밝기를 적응적으로 조절하는 기술이다. 주변 자연광과 LED 빛을 합쳐 일정한 총 조명량을 유지하되, 자연광이 강할 때는 LED를 어둡게, 자연광이 약할 때는 LED를 밝게 자동 조절한다.
기존 센서가 환경과 관계없이 LED를 일정하게 켜야 했다면, 이 기술은 주변 환경에 맞춰 LED 전력을 실시간으로 최적화할 수 있다. 실험 결과, 충분한 조명 환경에서 전력 소모를 86.22%나 줄였다.
두 번째는 ‘고효율 다접합 태양전지(Photovoltaic Method)’ 기술이다. 이는 단순한 태양광 발전을 넘어서 실내외 모든 환경의 빛을 전력으로 변환한다. 특히 적응형 전력 관리 시스템을 통해 주변 환경과 배터리 상태에 따라 11가지 서로 다른 전력 구성으로 자동 전환되어 최적의 에너지 효율을 달성한다.
세 번째 혁신 기술은 ‘축광/발광(Photoluminescent Method)’기술이다. 스트론튬 알루미네이트 미세입자*를 센서의 실리콘 캡슐화 구조에 혼합해, 낮 동안 주변 빛을 흡수해 저장했다가 어둠 속에서 서서히 방출한다. 이를 통해 태양광 500W/m²에 10분간 노출되면 완전한 어둠에서도 2.5분간 연속 측정이 가능하다.
*스트론튬 알루미네이트 미세입자: 야광페인트나 안전 표지판에 사용되는 형광체로, 빛을 흡수한 후 어둠 속에서 오랫동안 발광하는 축광 소재
이 세 가지 기술이 상호 보완적으로 작동해 밝은 환경에서는 첫 번째와 두 번째 방식이, 어두운 환경에서는 세 번째 방식이 추가로 지원하는 방식으로 24시간 연속 작동을 가능하게 한다.
연구팀은 이 플랫폼을 다양한 의료 센서에 적용해 실용성을 검증했다. 광용적맥파 측정 센서는 심박수와 혈중산소포화도를 실시간으로 모니터링해 심혈관 질환의 조기 발견을 가능하게 한다. 청색광 노출량 측정 센서는 피부 노화와 손상을 유발하는 블루라이트를 정확히 측정해 개인 맞춤형 피부 보호 가이드를 제공한다. 땀 분석 센서는 마이크로 유체 기술을 활용, 땀 속 염분, 포도당, pH를 동시에 분석해 탈수나 전해질 불균형을 실시간으로 감지할 수 있다.
추가적으로 센서 내 데이터 처리 기술을 도입해 무선 통신으로 인한 전력 소모도 대폭 줄였다. 기존에는 모든 원시 데이터를 외부로 전송해야 했지만, 이제는 센서 내부에서 필요한 결과만 계산해 전송함으로써 데이터 전송량을 400B/s에서 4B/s로 100배 감소시켰다.
연구팀은 성능 검증을 위해 건강한 성인 피험자를 대상으로 밝은 실내조명, 어두운 조명, 적외선 조명, 완전한 어둠 등 4가지 서로 다른 환경에서 테스트했다. 그 결과, 모든 조건에서 상용 의료기기와 동등한 측정 정확도를 보였다. 생쥐 모델을 이용한 저산소 상태 실험에서도 정확한 혈중산소포화도 측정이 가능함을 확인했다.
연구를 주도한 권경하 교수는 “이 기술을 활용해 24시간 연속 건강 모니터링이 가능해짐에 따라 의료 패러다임이 치료 중심에서 예방 중심으로 전환될 수 있을 것”이라며, “조기 진단을 통한 의료비 절감 효과와 함께 차세대 웨어러블 헬스케어 시장에서의 기술경쟁력 확보도 기대된다”라고 말했다.
이번 연구 결과는 인공지능반도체대학원 박도윤 박사과정 학생이 공동 제 1 저자로 국제 학술지 네이처 커뮤니케이션스(Nature Communications)에 7월 1일 발표됐다.
※논문명 : Adaptive Electronics for Photovoltaic, Photoluminescent and Photometric Methods in Power Harvesting for Wireless and Wearable Sensors;
※DOI: URL: https://www.nature.com/articles/s41467-025-60911-1
한편, 이번 연구는 한국연구재단 우수신진연구, 지역혁신 선도연구센터 과제, 과학기술정보통신부 정보통신기획평가원(IITP) 인공지능반도체대학원 과제, 그리고 BK FOUR 프로그램(Connected AI Education & Research Program for Industry and Society Innovation, KAIST EE)의 지원을 받아 수행됐다.
2025.07.31
조회수 3936
-
빛으로 단백질 · mRNA를 원할 때 꺼내 쓴다
기존의 ‘광유전학적 분자 응축물 기술(생체 분자를 빛을 사용해 특정한 덩어리(응축체)로 뭉치게 하거나 풀리게 조절하는 기술)’은 세포 안에서 여러 단백질이나 RNA가 다양하게 섞이기 때문에 원하는 분자만 골라서 다루기 어렵다는 한계가 있었다. 이 한계를 넘어, 우리 연구진이 ‘빛’을 쪼여 세포 속 특정 단백질이나 유전정보(mRNA)를 원하는 시점에 꺼내 쓸 수 있는 기술을 개발하여 유전자 조절 기술, 신약 개발 등에서의 새로운 가능성을 제시했다.
우리 대학 생명과학과 허원도 석좌교수 연구팀이 물리학과 박용근 석좌교수 연구팀과 협력하여, 단백질 및 mRNA를 세포 내에서 빛으로 원하는 시점에 저장(Store)하고 방출(Release)할 수 있는 ‘릴리저 기술(RELISR, REversible Light-Induced Store and Release)’을 개발했다고 23일 밝혔다.
이번 연구는 세포 내 다양한 생체 분자가 막이 없는 응축체(Biomolecular Condensate)에 저장돼 기능을 조절한다는 최신 세포기능 조절 원리를 빛으로 구현한 기술이다.
연구팀은 특정 분자와 선택적으로 결합하는 표적 부위가 부착된 광유전학 단백질 복합체를 증폭해, 빛 반응 분자 저장·방출 시스템인 릴리저 기술을 설계했다. 이를 통해 세포 및 생체 내에서 특정 단백질 혹은 mRNA를 릴리저에 안정적으로 저장해 빛을 비추면 원하는 시점에 방출할 수 있음을 증명했다.
연구팀은 다양한 세포주와 신경세포, 그리고 생쥐 간 조직 등에서 해당 시스템의 효과를 입증했다.
연구팀은 단백질을 저장⸱방출하는 단백질 방출시스템인 ‘단백질 릴리저 (Protein-RELISR)’를 통해 세포 모양 변화, 신경세포 내 국소 단백질 활성 등 미세 환경에서의 생화학 반응을 실시간으로 제어하는 데 성공했다.
아울러, mRNA를 표적으로 하는 mRNA 방출시스템인‘mRNA 릴리저 (mRNA-RELISR)’를 활용해, mRNA가 세포질 내에서 번역될 시점을 빛으로 조절하는 데 성공했으며, 실제 생쥐 모델에서도 mRNA 번역 조절이 가능함을 확인했다.
빛으로 표적 분자를 순간적으로 ‘가두는’ 기존 연구 LARIAT(단백질 올가미, 2014), mRNA-LARIAT(mRNA 올가미, 2019)에서 나아가, 이번 연구에서는 동일한 광자극으로 세포 내 무막 응축체에 저장된 단백질과 mRNA를 즉시 ‘방출해’단백질의 기능을 복원하고 mRNA 번역을 활성화할 수 있는 새로운 플랫폼을 제시했다.
연구를 주도한 허원도 석좌교수는 “릴리저(RELISR) 플랫폼은 광유전학 원리를 기반으로 단백질과 mRNA를 원하는 시간, 장소에서 저장하고 방출할 수 있는 범용 도구로, 뇌 신경세포 연구나 세포치료제, 차세대 신약 개발 등에 폭넓게 응용될 수 있다”며 “향후 유전자 가위(CRISPR-Cas) 시스템 등과의 결합이나, 조직 특이적 전달 기술(AAV 등)과 접목할 경우, 더욱 정밀한 치료 도구로 확장될 수 있을 것”이라고 설명했다.
이번 연구는 생명과학과 허원도 석좌교수(교신저자)의 지도로, 이채연 박사(연구 당시 학생, 제1 저자)가 중심이 되어 연구를 수행했다. 공동 교신저자인 물리학과 유다슬이 박사와 박용근 석좌교수도 연구에 참여했으며, 특히 박용근 교수 연구팀은 이미징 기반 분석을 통해 세포 내에서 ‘릴리저(RELISR)’ 시스템이 유도하는 생물리학적 변화를 정량적으로 평가하고, 실험 결과의 신뢰성과 객관성을 높이는 데 중요한 역할을 담당했다.
생명과학연구소 이채연 박사가 제1 저자로 주도한 이 연구는 국제 학술지 ‘네이처 커뮤니케이션스(Nature Communications)’에 2025년 7월 7일자로 게재됐다.
논문명: Optogenetic storage and release of protein and mRNA in live cells and animals
DOI: 10.1038/s41467-025-61322-y
한편, 이번 연구는 삼성미래기술육성재단과 한국연구재단 유전자편집·제어·복원기반기술개발사업의 지원을 받아 수행됐다.
2025.07.23
조회수 3485
-
생체신호를 이용한 로봇과의 상호작용에 대한 방안 제시
우리 대학 기계공학과 김정, 전기및전자공학과 제민규 교수 공동연구팀이 최근 국제 저명 학술지 ‘네이처 리뷰스 일렉트리컬 엔지니어링(Nature Reviews Electrical Engineering)’에 생체 전위(bio-potential)와 생체 임피던스(bio-impedance)를 활용한 직관적인 인간-로봇 상호작용(Human-Robot Interaction, HRI)에 대한 최신 동향과 발전을 다룬 리뷰 논문을 발표했다고 22일 밝혔다.
이번 리뷰 논문은 두 실험실의 박사 졸업생인 박경서 교수(DGIST, 공동 제 1 저자), 정화영 박사(EPFL, 공동 제1 저자), 정윤태 박사(IMEC), 서지훈 박사(UCSD)가 공동으로 참여한 결과물이다. 네이처 리뷰스 일렉트리컬 엔지니어링(Nature Reviews Electrical Engineering)은 네이처 저널에서 작년부터 새롭게 발행된 전기전자 및 인공지능 기술 분야의 리뷰 전문 학술지로 해당 분야의 세계적인 석학들을 엄격한 기준으로 선정해 초청하는 것으로 알려져 있다. 김정 교수 연구팀의 논문은 “Using bio-potential and bio-impedance for intuitive human-robot interaction”라는 제목으로 2025년 7월 18일자로 게재됐다.
(DOI: https://doi.org/10.1038/s44287-025-00191-5)
이 리뷰 논문에서는 생체신호가 움직임 의도를 빠르고 정확하게 감지하는 데 어떻게 활용될 수 있는지에 대해 설명하며, 신경 신호와 근육 활동을 기반으로 한 움직임 예측 기술의 발전을 소개한다. 또한, 생체 신호 센싱에서 저잡음 성능과 에너지 효율성을 극대화하는 데 있어 집적 회로(ICs)가 중요한 역할을 한다는 점에 중점을 두고, 생체 전위와 임피던스 신호를 정확하게 측정할 수 있는 저잡음, 저전력 설계의 최신 개발 동향도 함께 다룬다.
리뷰는 하이브리드 및 다중 모달 센싱 접근법의 중요성을 강조하며, 이를 통해 강력하고 직관적이며 확장 가능한 HRI 시스템을 구축할 수 있는 가능성을 제시한다. 연구팀은 생체 신호 기반 HRI 시스템을 실용화하기 위해 센서와 IC 설계 분야 간의 협력이 필수적임을 강조하며, 인터디스플리너리 협력이 차세대 HRI 기술 발전에 중요한 역할을 할 것이라고 밝혔다. 논문의 공동 제1 저자인 정화영 박사는 생체 전위와 임피던스 신호가 인간-로봇 상호작용을 더 직관적이고 효율적으로 만드는 데 기여할 수 있는 가능성을 제시하며, 향후 생체신호를 이용한 재활 로봇, 로봇 의수 등 HRI 기술 발전에 중요한 기여를 할 것이라고 전망했다. 본 연구는 한국연구재단의 휴먼 플러스 사업 등의 여러 연구 사업의 지원을 받아 수행됐다.
2025.07.22
조회수 2990
-
대기 오염 저감 위한 신개념 원자 촉매 설계
백금 셀레나이드는 백금(Pt)과 셀레늄(Se)이 층상 구조로 결합된 이차원 물질로, 우수한 결정성과 층간 상호작용의 정밀한 제어를 통해 다양한 물리적·화학적 특성의 조절이 가능한 것으로 알려져 있다. 이러한 특성으로 인해, 반도체, 광검출기, 전기화학 소자 등 다양한 분야에서 활발히 연구되어 왔다. 이번 연구진은 백금 셀레나이드 표면에 존재하는 원자 수준의 백금이 기체 반응에 대해 촉매로 기능할 수 있다는 새로운 설계 개념을 제시했으며, 이를 통해 고효율 이산화탄소 전환 및 일산화탄소 저감 등을 위한 차세대 기체상 촉매 기술로서의 가능성을 입증했다.
우리 대학 화학과 박정영 석좌교수 연구팀이 충남대학교 김현유 교수, 미국 센트럴플로리다대학교(UCF) 정연웅 교수 연구팀과 공동연구를 통해, 이차원 전이금속 칼코겐화합물인 백금 셀레나이드(PtSe₂) 표면에 노출된 백금 원자를 활용하여 우수한 일산화탄소 산화 성능을 구현하는 데 성공했다고 22일 밝혔다.
연구진은 촉매 성능을 극대화하기 위해 기존의 백금 덩어리 촉매 형태에서 백금 원자가 고밀도로 표면에 분산되도록 하여, 더 적은 양의 백금으로 더 많은 촉매반응을 유도하였으며, 표면의 전자 구조를 제어하여 백금과 셀레늄 사이의 전자 상호작용을 활발하게 일어나도록 유도하였다. 이 과정을 통해 제작된 수 나노미터 두께의 백금 셀레나이드 박막은, 동일 조건에서 일반 백금 박막보다 전 온도 범위에서 더 우수한 일산화탄소 산화 성능을 나타냈다.
특히, 표면에서는 일산화탄소와 산소가 골고루 비슷한 비율로 흡착되어 서로 반응할 기회가 높아졌고, 이로 인해 촉매 반응이 크게 향상됐다. 이러한 성능 향상의 핵심은 ‘셀레늄 결손(Se-vacancy)’으로 인해 노출이 확대된 표면 백금 원자들이 드러나면서 기체들이 붙을 수 있는 흡착점도 늘어났다는 데 있다.
연구진은 해당 백금 원자들이 실제 반응 과정에서 흡착점으로 작용했다는 사실을 포항가속기연구소에서 수행된 상압 엑스선 광전자분광(AP-XPS) 분석을 통해 실시간으로 확인했다. 이러한 고정밀 분석은 1나노미터 수준의 표면을 상압 환경에서 관찰할 수 있는 고도 장비 덕분에 가능했다. 동시에 컴퓨터 시뮬레이션 (밀도범함수이론*) 계산을 통해, 백금 셀레나이드가 일반 백금과는 다른 전자 흐름의 특성을 가지고 있음을 이론적으로도 입증했다.
*밀도범함수이론(Density Functional Theory, DFT): 전자 밀도(electron density)를 기반으로 시스템의 전체 에너지를 계산하는 방법
박정영 교수는 “이번 연구는 기존 백금 촉매와 다른 이차원 층상 구조의 백금 셀레나이드를 활용해, 기체 반응에 특화된 촉매 기능을 이끌어낸 새로운 설계 전략을 제시한 것”이라며, “백금과 셀레늄 사이의 전자적 상호작용이 일산화탄소와 산소를 균형있게 흡착하는 반응 조건을 만들었고 기존 백금보다 전체 온도내에서 반응성이 높도록 설계하여 실제 적용성이 향상되게 하였다. 이로써 원자 단위 설계, 2차원 물질 플랫폼, 흡착 조절 기술 등을 통해 고효율 촉매 반응 메커니즘을 구현할 수 있었다”고 밝혔다.
이번 연구는 우리 대학 화학과 한규호 박사, 충남대 신소재공학과 최혁 박사, 인하대 김종훈 교수가 공동 제1 저자로 참여했으며, 세계적 권위의 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 지난 7월 3일 자로 게재됐다.
※ 논문 제목: Enhanced catalytic activity on atomically dispersed PtSe2 two-dimensional layers
※DOI: 10.1038/s41467-025-61320-0
한편, 이번 연구는 과학기술정보통신부의 중견연구자지원사업과 교육부의 중점연구소사업, 국가전략기술소재개발사업, 미국 국립과학재단(NSF) CAREER 프로그램, 인하대학교 연구비, UCF 박사후연구자 프로그램(P3)의 지원을 받아 수행됐으며, 포항가속기연구소 및 한국기초과학지원연구원(KBSI)의 협조로 가속기 기반 분석이 진행됐다.
2025.07.22
조회수 2883
-
'추론 속도 · 성능 모두 잡은' AI 확산모델 신기술 개발
확산모델(diffusion model)은 많은 AI 응용에 활용되고 있으나, 효율적인 추론-시간 확장성(inference-time scalability)*에 대한 연구가 부족했다. 이에 연구진은 확산모델에서도 고성능 고효율 추론이 가능한 신기술을 개발했다. 이 기술은 기존 모델이 한번도 성공하지 못한 초대형 미로찾기 태스크에서 100%의 성공률을 기록하며 성능을 입증했다. 이번 성과는 향후 지능형 로봇, 실시간 생성 AI 등 실시간 의사결정이 요구되는 다양한 분야에서 핵심 기술로 활용될 수 있을 것으로 기대된다.
*추론-시간 확장성(inference-time scalability): AI 모델이 추론 단계에서 사용할 수 있는 계산 자원의 양에 따라 성능을 유연하게 조절할 수 있는 능력을 의미한다.
우리 대학 전산학부 안성진 교수 연구팀이 딥러닝 분야 세계적 석학인 몬트리올 대학교 요슈아 벤지오(Yoshua Bengio) 교수와의 공동연구를 통해, 인공지능 확산 모델의 추론-시간 확장성을 크게 개선하는 신기술을 개발했다고 20일 밝혔다. 이번 연구는 KAIST-MILA(몬트리올 학습 알고리즘 연구소) 프리프론탈 AI 공동연구센터를 통한 협력의 일환으로 수행됐다.
이 기술은 인공지능의 학습 이후 추론 단계에서 더 많은 계산 자원을 효율적으로 활용함으로써, 단순히 데이터나 모델 크기를 키우는 것으로는 해결할 수 없는 고난도 문제를 풀 수 있도록 돕는 핵심 AI 기술로 주목받고 있다. 하지만 현재 다양한 응용 분야에서 활용되고 있는 확산 모델에서는 이러한 스케일링을 효과적으로 구현하는 방법론이 부족하다는 한계가 있었다.
이에 안 교수 연구팀은 벤지오 교수와 협력해, 몬테카를로 트리 탐색(Monte Carlo Tree Search) 기반 새로운 확산 모델 추론 기법을 제안했다.
이 방법은 확산 과정 중 다양한 생성 경로를 트리 구조로 탐색하며, 제한된 계산 자원으로도 높은 품질의 출력을 효율적으로 찾아낼 수 있도록 설계됐다. 이를 통해 기존 방법이 0%의 성공률을 보이던‘자이언트-스케일의 미로 찾기’태스크에서 100%의 성공률을 달성했다.
아울러 후속 연구에서는 제안한 방법론의 주요 단점인 느린 속도 문제를 대폭 개선하는 방법을 개발하는데 성공하였다. 트리 탐색을 효율적으로 병렬화하여 비용을 최적화해, 이전 방식 대비 최대 100배 빠른 속도로도 동등하거나 더 우수한 품질의 결과를 얻는 데 성공했다. 이는 제안한 방법론의 추론 능력과 실시간 적용 가능성을 동시에 확보했다는 점에서 큰 의미가 있다.
안성진 교수는 “이번 연구는 고비용 계산이 요구되던 기존 확산 모델의 한계를 근본적으로 극복한 기술”이라며 “지능형 로봇, 시뮬레이션 기반 의사결정, 실시간 생성 AI 등 다양한 분야에서 핵심 기술로 활용될 수 있을 것”이라고 밝혔다.
연구 결과는 전산학부 윤재식 박사과정이 제 1저자로 지난 7월 13일부터 19일까지 캐나다 벤쿠버에서 열린 제42회 국제기계학습학회(ICML 2025)에서 스포트라이트(Spotlight) 논문(전체 채택 논문 중 상위 2.6%)으로 발표됐다.
※ 논문제목: Monte Carlo Tree Diffusion for System 2 Planning (Jaesik Yoon, Hyeonseo Cho, Doojin Baek, Yoshua Bengio, Sungjin Ahn, ICML 25), Fast Monte Carlo Tree Diffusion: 100x Speedup via Parallel Sparse Planning (Jaesik Yoon, Hyeonseo Cho, Yoshua Bengio, Sungjin Ahn)
※ DOI: https://doi.org/10.48550/arXiv.2502.07202,
https://doi.org/10.48550/arXiv.2506.09498
한편, 이번 연구는 한국연구재단의 지원을 받았다.
2025.07.21
조회수 2878
-
음주로 인한 간염 유발 원리 최초 밝혔다
과도한 음주는 알코올성 간질환을 유발하며, 이 중 약 20%는 알코올 지방간염으로 진행되고 이는 간경변증과 간부전으로 이어질 수 있어 조기 진단과 치료가 매우 중요하다. 우리 연구진은 음주 시 활성산소(ROS)가 발생해 간세포 사멸과 염증 반응을 유발하는 새로운 분자 메커니즘을 규명했다. 아울러, 간세포가 신경계의 시냅스처럼 신호를 주고 받는 유사시냅스를 형성하고 염증을 유도하는 ‘새로운 신경학적 경로’를 세계 최초로 밝혀냈다.
우리 대학 의과학대학원 정원일 교수 연구팀이 서울대 보라매 병원 김원 교수 연구팀과의 공동 연구를 통해, 음주로 인한 간 손상 및 염증(알코올 지방간염, Alcohol-associated Steatohepatitis, ASH)의 발생 기전을 분자 수준에서 규명해 알코올 간질환의 진단과 치료에 단서를 제시했다고 17일 밝혔다.
정원일 교수 연구팀은 만성 음주 시 ‘소포성 글루탐산 수송체(VGLUT3)’의 발현 증가로 글루탐산이 간세포에 축적되며, 이후 폭음으로 인한 간세포 내 칼슘 농도의 급격한 변화가 글루탐산* 분비를 유도함을 확인했다.
*글루탐산: 아미노산의 일종으로, 뇌와 간을 포함한 다양한 조직에서 세포 간 신호전달, 단백질 합성, 에너지 대사 등에 관여하며 지나치게 많으면 신경세포가 과흥분하여 세포 손상 또는 사멸하게 함
분비된 글루탐산은 간 내 상주 대식세포인 쿠퍼세포의 글루탐산 수용체(mGluR5)를 자극해 활성산소(ROS) 생성을 유도하고, 이는 곧 간세포 사멸과 염증 반응으로 이어지는 병리적 경로를 형성한다는 사실을 밝혀냈다.
특히 이번 연구의 핵심은, 음주 시 간 내에서 간세포와 쿠퍼세포가 일시적으로 신경계에서만 관찰되던 시냅스와 비슷한 구조인‘유사시냅스(pseudosynapse)’를 형성해 신호를 주고받는 현상을 처음으로 규명했다는 점이다.
이 유사시냅스 혹은 대사시냅스(metabolic synapse)는 음주로 인해 간세포가 팽창(ballooning)되면서 쿠퍼세포와 물리적으로 밀착될 때 형성된다. 즉, 손상된 간세포가 단순히 사멸하는 것이 아니라, 인접한 쿠퍼세포에 신호를 보내 면역 반응을 유도할 수 있다는 의미이다.
이러한 발견은 말초 장기에서도 ‘세포 간 밀접한 구조적 접촉을 통해 신호전달이 가능하다’라는 새로운 패러다임을 제시하며, 단순한 간세포 손상을 넘어 알코올로 손상된 간세포가 능동적으로 대식세포를 자극해 간세포의 사멸을 통한 재생을 유도하는‘자율 회복기능’도 존재함을 보여줬다.
실제로 연구팀은 글루탐산 수송체(VGLUT3), 글루탐산 수용체(mGluR5) 및 활성산소 생성 효소(NOX2)를 유전적 또는 약리적으로 억제하면 알코올 매개 간 손상이 줄어든다는 사실을 동물 모델을 통해 입증했다. 이러한 기전을 기반으로, 연구팀은 알코올성 간질환 환자의 혈액과 간 조직을 분석해 해당 메커니즘이 임상적으로도 적용될 수 있음을 제시했다.
의과학대학원 정원일 교수는 “이는 향후 알코올 지방간염(ASH)의 발병 초기 단계에서 진단용으로 혹은 치료를 위한 새로운 분자 표적으로 활용될 수 있다”라고 말했다.
의과학대학원 양경모 박사(현, 여의도 성모병원)와 김규래 박사과정생이 공동 제1 저자로 참여한 이번 연구는 서울대 보라매병원 김원 교수 연구팀과 함께 진행됐으며, 국제 학술지 `네이처 커뮤니케이션즈(Nature communications)' 지난 7월 1일 자로 출판됐다.
※ 논문명: Binge drinking triggers VGLUT3-mediated glutamate secretion and subsequent hepatic inflammation by activating mGluR5/NOX2 in Kupffer cells
※ DOI: 10.1038/s41467-025-60820-3.
한편, 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단 글로벌 리더연구, 중견연구자사업 및 바이오·의료기술개발사업의 지원으로 수행됐다.
2025.07.17
조회수 3126
-
6배 정밀한 3D 뇌 모사 플랫폼 구현 성공
기존의 3차원(3D) 신경세포 배양 기술은 뇌의 복잡한 다층 구조를 정밀하게 구현하기 어렵고, 구조와 기능을 동시에 분석할 수 있는 플랫폼이 부족해 뇌 연구에 제약이 있었다. 우리 연구진이 뇌처럼 층을 이루는 신경세포 구조를 3D 프린팅 기술로 구현하고, 그 안에서 신경세포의 활동까지 정밀하게 측정할 수 있는 통합 플랫폼 개발에 성공했다.
우리 대학 바이오및뇌공학과 박제균·남윤기 교수 공동연구팀이 뇌 조직과 유사한 기계적 특성을 가진 저점도 천연 하이드로겔을 이용해 고해상도 3D 다층 신경세포 네트워크를 제작하고, 구조적·기능적 연결성을 동시에 분석할 수 있는 통합 플랫폼을 개발했다고 16일 밝혔다.
기존 바이오프린팅 기술은 구조적 안정성을 위해 고점도 바이오잉크를 사용하지만, 이는 신경세포의 증식과 신경돌기 성장을 제한하고, 반대로 신경세포 친화적인 저점도 하이드로겔은 정밀한 패턴 형성이 어려워 구조적 안정성과 생물학적 기능 사이의 근본적인 상충 관계가 있었다.
연구팀은 묽은 젤로도 정밀한 뇌 구조를 만들고, 층마다 정확히 정렬하며, 신경세포의 활동까지 동시에 관찰할 수 있는 3대 핵심기술을 결합해 정교하고 안정적인 뇌 모사 플랫폼을 완성했다.
3대 핵심기술은 ▲ 묽은 젤(하이드로겔)이 흐르지 않도록 스테인리스 철망(마이크로메시) 위에 딱 붙게 만들어 주는‘모세관 고정 효과’ 기술로 기존보다 6배 더 정밀하게 (해상도 500μm 이하) 뇌 구조를 재현했고 ▲ 프린팅된 층들이 삐뚤어지지 않고 정확히 쌓이도록 맞춰주는 원통형 설계인 ‘3D 프린팅 정렬기’로 다층 구조체의 정밀한 조립과 미세 전극 칩과의 안정적 결합을 보장하였고 ▲ 아래쪽은 전기신호를 측정하고, 위쪽은 빛(칼슘 이미징)으로 동시에 세포 활동을 관찰하는 ‘이중 모드 분석 시스템’기술로 층간 연결이 실제로 작동하는지를 여러 방식으로 동시에 확인할 수 있다.
연구팀은 뇌와 유사한 탄성 특성을 지닌 피브린 하이드로겔을 이용해 3층으로 구성된 미니 뇌 구조를 3D 프린팅으로 구현하고, 그 안에서 실제 신경세포들이 신호를 주고받는 과정을 실험을 통해 입증했다.
위층과 아래층에는 대뇌 신경세포를 배치하고, 가운데층은 비어 있지만, 신경세포들이 가운데를 뚫고 지나가며 연결되도록 설계했다. 아래층에는 미세 센서(전극칩)를 달아 전기신호를 측정하고, 위층은 빛(칼슘 이미징)으로 세포 활동을 관찰한 결과, 전기 자극을 줬을 때 위아래층 신경세포가 동시에 반응했고, 신경 연결을 차단하는 약물(시냅스 차단제)을 넣었더니 반응이 줄어들어 신경세포들이 진짜로 연결돼서 신호를 주고받고 있다는 것을 입증했다.
바이오및뇌공학과 박제균 교수는 “이번 연구는 뇌 조직의 복잡한 다층 구조와 기능을 동시에 재현할 수 있는 통합 플랫폼의 공동개발 성과”임을 강조하며, “기존 기술로 14일 이상은 신호 측정이 불가했던 것에 비해 27일 이상 안정적인 미세 전극 칩 인터페이스를 유지하면서 구조-기능 관계를 실시간으로 분석할 수 있어, 향후 신경질환 모델링, 뇌 기능 연구, 신경독성 평가 및 신경 보호 약물 스크리닝 등 다양한 뇌 연구 분야에 활용할 수 있을 것”이라고 말했다.
바이오및뇌공학과 김수지 박사와 윤동조 박사가 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘바이오센서스 앤 바이오일렉트로닉스(Biosensors and Bioelectronics)’에 2025년 6월 11일 자로 온라인판에 게재됐다.
※논문명: Hybrid biofabrication of multilayered 3D neuronal networks with structural and functional interlayer connectivity
※DOI: https://doi.org/10.1016/j.bios.2025.117688
한편, 이번 연구는 한국연구재단 글로벌 기초연구실지원사업, 중견연구 및 바이오·의료기술개발사업의 지원을 받아 수행됐다.
2025.07.16
조회수 3096