-
전상용, 임성갑 교수, 신경세포의 안정적 배양 가능한 플랫폼 개발
우리 대학 생명과학과 전상용 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 신경세포를 장기적, 안정적으로 배양할 수 있는 아세틸콜린 유사 고분자 박막 소재를 개발했다.
특히 이 연구는 KAIST의 ‘학부생 연구 참여 프로그램(URP : Undergraduate research program)’을 통해 유승윤 학부생이 참여해 더욱 큰 의미를 갖는다.
유승윤 학부생을 포함해 백지응 박사과정, 최민석 박사가 공동 1저자로 참여한 이번 연구 성과는 나노분야 학술지 ‘에이시에스 나노(ACS Nano)’ 10월 28일자 온라인 판에 게재됐다.
신경세포는 알츠하이머, 파킨슨병, 헌팅턴병 등의 신경퇴행성 질환 및 신경 기반 바이오센서 등 전반적인 신경관련 응용연구에 꼭 필요한 요소이다.
대부분의 신경 질환이 노인성, 퇴행성이기 때문에 신경세포가 오래됐을 때 어떤 현상이 발생하는지 관찰할 수 있어야 한다. 하지만 신경세포는 장기 배양이 어려워 퇴행 상태가 되기 전에 세포가 죽게 돼 관찰이 어려웠다.
기존에는 특정 수용성 고분자(PLL)를 배양접시 위에 코팅하는 방법을 통해 신경세포를 배양했다. 그러나 이 방법은 장기적, 안정적인 세포 배양이 불가능하기 때문에 신경세포를 안정적으로 장기 배양할 수 있는 새로운 플랫폼이 필요하다.
연구팀은 문제 해결을 위해 ‘개시제를 이용한 화학 기상 증착법(iCVD : initiated chemical vapor deposition)’을 이용했다. iCVD는 기체 상태의 반응물을 이용해 고분자를 박막 형태로 합성하는 방법으로, 기존 세포 배양 기판 위에 손쉽게 얇고 안정적인 박막을 형성시킬 수 있다.
연구팀은 이러한 기체상 공정의 장점을 이용해 신경세포를 장기적으로 배양할 수 있는 기능을 가진 공중합체 고분자 박막을 합성하는 데 성공했다. 새로 합성된 이 고분자 박막은 신경전달물질로 알려진 아세틸콜린과 유사한 물질로 이뤄져 있다.
또한 신경세포가 고분자 박막에서 배양될 수 있는 최적화된 조건을 발견했고, 이 조건에서 생존에 관여하는 여러 신경관련 유전자를 확인했다.
연구팀은 생명과학과 손종우 교수 연구팀의 도움을 통해 새로 배양된 신경세포가 기존의 신경세포보다 전기생리학적 측면 및 신경전달 기능적 측면에서 안정화됨을 확인했다.
연구팀은 “신경세포를 장기적으로 배양할 수 있는 이 기술은 향후 신경세포를 이용한 바이오센서와 신경세포 칩 개발의 핵심 소재로 활용될 것이다”며 “다양한 신경 관련 질병의 원리를 이해할 수 있는 역할을 할 것으로 기대된다”고 말했다.
이번 연구는 한국보건산업진흥원과 한국연구재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 본 연구에서 개발된 표면(pGD3) 및 폴리라이신 코팅 위에서 장시간 배양된 신경세포
그림2. 신경전달물질 유사 작용기를 도입한 표면 형성 과정
2016.11.17
조회수 21319
-
이효선 박사과정, 한국인최초 미국진공학회 호프만장학상 수상
〈 이 효 선 박사과정 〉
우리 대학 EEWS 대학원의 이효선 박사과정(28, 지도교수 박정영) 학생이 제 63회 미국진공학회(American Vacuum Society) 국제학회에서 최고 수준의 대학원생에게 주어지는 ‘호프만 장학상(Dorothy M, and Earl S.Hoffman Scholarship Award)’을 한국인 최초로 수상했다.
1954년 설립된 미국진공학회(AVS)는 화학, 물리, 생물학 등 다양한 분야의 전문가가 모여 나노과학, 표면과학 등의 과학기술분야 발전에 기여한 국제 학회이다. 이번에 열린 제63회 학회는 11월 6일부터 6일간 미국 내슈빌에서 열렸고 세계 각국의 회원 4천 500여 명이 참석했다.
호프만 장학상은 전 미국진공학회장이었던 도로시 M. 호프만 학자의 후원으로 2002년부터 제정됐다. 학회에 참석한 대학원생 중 최고 수준의 연구결과를 보여준 2명을 선정해 시상한다.
이효선 씨는 이번 학회에서 ‘나노디바이스를 이용한 표면촉매반응에서의 핫전자 검출’이라는 주제의 연구를 통해 수상했다. 이는 상이 제정된 이래 비미국 대학 출신 학생이 수상한 최초의 사례이다.
이씨의 연구는 촉매활성도에 영향을 미치는 핫전자를 새로운 나노디바이스를 이용해 정량적으로 분석하는 기술이다. 이 연구는 나노촉매표면에서의 화학반응 원리의 이해도를 높였다는 평을 받아 지난 2월 ‘나노레터스(Nano Letters)’에 게재됐다.
또한 수소 산화반응 중 금속 나노촉매 표면에서 발생한 핫전자 흐름을 검출해 앙케반테 케미(Angewandte chemi)에도 논문을 게재했다.
이효선 씨는 “세계적으로 권위 있는 학회에서 연구의 우수성을 인정받아 한국인 최초로 수상하게 돼 기쁘다”며 “앞으로도 우수 연구를 통해 한국 과학기술 발전에 기여하겠다” 고 말했다.
2016.11.15
조회수 16918
-
김일두 교수, 새집증후군 유발하는 톨루엔 초정밀 감지센서 개발
우리 대학 신소재공학과 김일두 교수 연구팀이 새집증후군, 새차증후군의 대표적 유해 가스인 톨루엔을 극미량의 농도에서도 검출할 수 있는 초고감도 감지소재 센서를 개발했다.
이번 연구 결과는 화학분야 권위 학술지 미국화학회지(JACS : Journal of the American Chemical Society) 10월자 온라인 판에 게재됐다.
톨루엔은 대표적 유독성, 휘발성 유기화합물로 중추신경계와 호흡기관에 이상을 유발한다. 두통을 유발하고 장기간 노출될 경우에는 사망에 이를 수도 있다.
실내 공기질 관련 톨루엔 농도의 정부 권고기준은 약 244ppb(10억분의 1 단위) 이하로 기준 수치를 넘어가면 새집증후군, 새차증후군 등을 유발시킨다.
하지만 공기 중의 톨루엔을 정밀 분석하기 위해서는 고가의 설비를 활용해야 하는 어려움이 있다. 현재까지 개발된 반도체식(저항 변화식) 휴대용 톨루엔 센서들은 톨루엔의 유무만 구분 가능할 뿐 십 억분의 1에서 백만분의 1(ppm) 사이의 극미량의 톨루엔은 검출할 수 없다는 한계가 있다.
연구팀은 기존 센서의 한계를 극복하기 위해 다공성 물질인 금속유기구조체(metal-organic framework)의 내부에 3나노미터 크기의 촉매 입자를 담지하고, 이를 나노섬유 소재에 붙여 최고 수준의 톨루엔 감지 특성을 갖는 센서를 개발했다.
연구팀은 금속유기구조체를 팔라듐 촉매와 결합시켜 복합 촉매로 활용했다. 이 복합 촉매는 다공성 금속산화물 나노섬유에 결착된 구조로 나노섬유 표면에서 형성되는 비균일 접합(heterojunction) 구조와 나노 촉매의 시너지 효과로 인해 초고감도의 톨루엔 감지특성을 보였다.
연구팀이 개발한 센서는 100ppb 수준의 극미량의 톨루엔 가스 노출에도 일반 공기 중의 상태에 비해 4배 이상의 탁월한 감도 변화를 보였다.
금속유기구조체 기반의 이종 촉매가 결합된 나노섬유 감지소재는 실내외 공기 질 측정기, 환경 유해가스 검출기, 호흡기반 질병진단 센서 등 다양한 분야에서 활용 가능하다.
또한 나노입자 촉매 및 금속유기구조체의 종류만 바꿔주면 톨루엔 외의 다른 특정 가스에 선택적으로 반응하는 고성능 소재를 대량으로 합성할 수 있다. 향후 다양한 센서 소재 라이브러리 구축이 가능할 것으로 기대된다.
김 교수는 “다종 감지 소재를 활용해 수많은 유해가스를 보다 정확히 감지할 수 있는 초고성능 감지소재로 적용 가능하다”며 “대기 환경 속의 유해 기체들을 손쉽게 검출해 각종 질환의 예방이 가능하고 지속적인 건강 관리에 큰 도움을 줄 것이다”고 말했다.
신소재공학과 구원태 박사 과정이 1저자로 참여한 이번 연구는 한국과 미국에 특허 출원됐다. 이번 연구는 미래창조과학부 X-프로젝트와 한국이산화탄소포집 및 처리연구개발센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 나노섬유 감지소재가 코팅된 개별 가스센서 및 가스센서가 장착된 스마트 시계
그림2. 저널 JACS에 게재된 논문 대표 이미지
그림3. 나노섬유사진
그림4. 1 ppm의 극미량 톨루엔 가스에 대한 우수한 선택성 및 반응성을 보여주는 표
2016.10.10
조회수 12501
-
전상용 교수, 몸 속 물질 이용한 염증 치료제 개발
〈 전 상 용 교수 〉
우리 대학 생명과학과 전상용 교수 연구팀(1저자 이용현 박사)이 신체 내부의 항산화물질을 이용한 새로운 항염증 나노의약품을 개발했다.
빌리루빈이라 불리는 생리활성물질 기반 100나노미터 크기의 나노입자로 이뤄진 이 약품은 만성 및 급성 난치성 염증질환 치료에 쓰일 것으로 기대된다.
이번 연구는 화학분야 저명학술지 ‘앙게반테 케미(Angewandte Chemie international Edition)’ 5월 4일자 온라인 판에 게재됐다.
고분자, 무기 나노입자 등의 많은 나노소재들이 질병 진단 및 치료용 나노의약품으로 개발되고 있다. 그러나 대부분의 약품들은 인공소재로 이뤄져 생분해성 및 생체적합성이 낮다. 이러한 약품들이 신체에 장기간 남을 경우 잠재적인 독성을 유발할 가능성이 있어 실제 임상적용이 되는 예는 소수에 불과하다.
연구팀은 문제 해결을 위해 이미 우리 몸속에 존재하는 항산화 및 면역조절 물질인 빌리루빈을 이용했다. 빌리루빈은 헤모글로빈에 존재하는 산소결합 물질인 헴(Heme)의 최종 대사체이다.
빌리루빈은 노란색 담즙 색소로서 혈중 농도가 높아지면 황달의 원인이 돼 예전에는 쓸데없는 물질로 여겨졌다. 하지만 근래 발표된 역학조사에 따르면 빌리루빈의 혈중 농도가 다소 높으면 심혈관 질환이나 암 발병 가능성이 현저히 낮아진다는 사실이 밝혀졌다.
또한 빌리루빈은 여러 활성산소들을 제거하고 염증과 관련된 면역세포를 조절하는 등의 기능을 해 세포와 조직을 보호한다는 사실이 동물 실험을 통해 확인됐다.
그러나 물에 거의 녹지 않는 특성 때문에 빌리루빈을 실제 치료에 적용하지 못했다. 전 교수 연구팀은 빌리루빈에 초 친수성 고분자인 폴리에틸렌글리콜(PEG)을 결합한 ‘페길화된 빌리루빈’을 합성해 수용액에서 자가 조립돼 약 100나노미터 직경을 갖는 빌리루빈 나노입자로 재탄생시켰다.
이 빌리루빈 나노입자는 항산화 및 항염증 효능을 그대로 유지하면서 신체에 축적되지 않고 배설돼 빌리루빈의 장점만 갖는 나노의약품이 됐다.
효능 확인을 위해 대표적 난치성 만성 염증 질병인 대장염 모델을 쥐에게 투여한 후 빌리루빈 나노입자를 투여했다. 염증이 형성된 부위에 나노입자가 선택적으로 분포됐고 대장염 진행을 효과적으로 차단했다.
또한 장 길이가 짧아지고 혈변 등의 부작용이 생기는 대조군과 다르게 정상 생쥐와 비슷한 수준으로 회복됐고, 황달 등의 부작용이 발생하지 않아 높은 수준의 항염증 효과를 확인했다.
연구팀은 빌리루빈 나노입자가 대장염 모델 외에도 허혈성 간질환, 천식, 췌장소도세포 이식 동물 모델에서 우수한 효과를 보여 향후 범용 항염증 나노의약품이 될 수 있을 것으로 기대된다고 밝혔다.
연구팀은 “빌리루빈 나노입자는 우리 몸속에 존재하는 생리활성물질과 친수성 고분자가 접합된 간단한 화학물질로 구성됐다”며 “생분해성 및 생체적합성이 높고 대량 생산이 가능해 바로 임상 적용이 가능하다”고 말했다.
전 교수는 “향후 국내외 연구진들과 전임상 및 임상실험을 수행할 예정이다”며 “적절한 치료제가 없는 난치성 염증질환을 치료할 수 있는 새로운 나노의약품을 개발해 환자들의 고통을 덜어주고 싶다”고 말했다.
이번 연구는 한국연구재단 글로벌연구실 및 KAIST 시스템헬스케어 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 형광물질 ICG가 로딩된 빌리루빈 나노입자가 염증조직(대장, Colon)으로 선택적으로 축적됨
그림2. 빌리루빈과 폴리에틸렌 글리콜의 축합방법 및 제조된 빌리루빈 기반 나노입자의 모식도
그림3. 고용량의 빌리루빈 나노의약품이 정맥주사되었을 때, 부작용이 없음을 나타내는 결과
그림4. 빌리루빈 나노입자를 처리한 염증그룹에서는 정상그룹과 비슷해진 대장을 관찰가능
2016.05.19
조회수 14406
-
허원도 교수, 빛을 통해 세포내 물질 이동 제어 기술 개발
〈 허 원 도 교수 〉
우리 대학 생명과학과 허원도 교수 연구팀이 막으로 이루어진 세포내 소기관들의 이동을 빛으로 자유롭게 제어하는데 성공했다. 이로써 세포내 물질 수송의 단계별 메커니즘을 규명해 암과 신경질환 치료에 새로운 해법을 제시할 수 있을 것으로 기대된다.
연구팀은 세포내 물질 수송을 조절하는 새로운 광유전학 기술인 생체막 올가미(IM-LARIAT; Light-Activated Reversible Inhibition by Assembled Trap of Intracellular Membrane) 기술을 개발했다.
세포 내에는 엔도좀(endosome)이나 리소좀(lysosome), 엑소좀(exosome) 등 막으로 이루어진 다양한 막 구조 세포 소기관2)(intracellular membranes)들이 존재한다. 막 구조 세포 소기관들은 세포의 성장과 분열에 밀접한 세포의 기본 기능인 물질 수송과 물질 분비, 신호전달과정 등에 관여한다.
세포내 물질 수송은 매우 역동적으로 움직이는 세포 소기관들에 의해 이루어지는데, 복잡한 움직임을 제어할 방법이 거의 없어 세포 관련 연구가 제한돼 왔다.
이에 허원도 교수는 생체막 올가미 기술을 개발, 빛을 통해 세포 소기관들의 이동을 원하는 때, 원하는 위치에서 일시 정지시켜 세포 소기관들의 이동 메커니즘을 실시간으로 연구하는데 성공했다.
허원도 교수팀은 청색 빛에 반응하는 식물의 청색광 수용 단백질에, 세포 소기관들의 생체막에 존재하는 랩 단백질(Rab small GTPase)을 결합시킨 융합단백질을 개발했다. 이 융합단백질을 실험동물의 암세포와 신경세포에 발현시킨 뒤 청색 빛을 비춘 결과, 많은 막 구조 세포 소기관들이 서로 응집하여 이동이 일시 정지되는 현상을 확인했다.
특히 생체막 올가미 기술을 신경세포에 적용, 엔도좀들의 이동을 일시 정지 시켜, 뇌 신경 세포 성장원추(growth cone)의 성장을 제어하는데 성공했다. 청색 빛을 비추자 일시적으로 성장이 멈췄던 신경세포가, 빛을 끄자 다시 빠르게 자라나는 것을 추가로 확인했다.
이번 연구는 약물이나 전기 자극이 아닌 빛을 비추는 비 침습적(non-invasive) 방식을 고안, 최소 자극으로 막 구조 세포 소기관들의 이동을 제어할 수 있게 된 데 의의가 있다. 신경세포의 분화 및 암세포의 물질 수송을 빛으로 정지시킬 수 있는 생체막 올가미 기술을 응용하면, 다양한 암과 신경질환의 치료 해법을 제시할 수 있을 것으로 기대된다.
허원도 교수는 “이번 연구는 살아있는 세포내에 존재하는 다양한 세포 소기관들을 빛으로 제어한 연구로, 적외선이나 소형 광원을 이용한 생체막 관련 질환 치료법이나 신경세포재생연구로 발전시킬 수 있을 것”이라며 “특히 뇌 신경세포 내 소기관들의 이동과 물질 수송 연구는 기억과 학습 관련 연구 분야에도 새 장을 열어줄 것”이라고 말했다.
이번 연구결과는 생명과학 분야 세계적 학술지인 네이처 케미컬 바이올로지(Nature Chemical Biology, IF 12.996) 온라인판 4월 12일자에 게재됐다.
허원도 교수는 지난 3년 동안 유명학술지에 독자적으로 개발한 광유전학기술들을 연속적으로 발표하고 있으며 현재 수편의 논문들도 해외유명저널에서 심사 중이다. 2014년에 Nature Methods, Nature Communications, Cell 자매지인 Chemistry & Biology 표지논문으로 발표를 시작했다. 2015년 Nature Biotechnology 표지논문에 이어, 이번에는 Nature Chemical Biology에 발표하는 등 세계적으로 광유전학분야를 선도하고 있다.
□ 그림 설명
그림1. 세포 내 물질 수송의 과정
2016.04.18
조회수 14671
-
빛 이용해 알츠하이머 완화 가능성 열어
박 찬 범 교수
우리 대학 신소재공학과 박찬범 교수 연구팀과 한국생명공학연구원(원장 오태광) 바이오나노센터 유권 박사팀이 빛과 유기분자인 포르피린을 이용해 알츠하이머 증후군의 원인 물질로 알려진 베타-아밀로이드(beta-amyloid)의 응집 과정을 억제하는 데 성공했다.
이 기술을 통해 알츠하이머 증후군을 비롯한 여러 가지 퇴행성 뇌질환 치료에 새로운 가능성을 제시할 것으로 기대된다.
이번 연구결과는 독일의 국제 저명 학술지인 앙케반테 케미(Angewandte Chemie) 21일자 표지논문에 게재됐다.
빛을 이용한 치료는 시간과 치료 부위를 조절하기 쉽다는 장점이 있다. 암과 같은 경우에는 유기 광감응제를 투여하고 빛을 병변 부위에 조사하는 광역학 치료(photodynamic therapy)가 활용되고 있다. 하지만 광역학 치료가 알츠하이머병과 같은 퇴행성 뇌질환에 적용된 사례는 없었다.
알츠하이머 증후군은 환자의 뇌에서 생성되는 베타-아밀로이드라는 단백질이 응집돼 뇌에 침착하면서 시작된다. 이렇게 형성된 응집체는 뇌세포에 유해한 영향을 주고 손상을 일으켜 치매와 같은 뇌 기능 저하를 일으킨다.
이 과정에서 베타-아밀로이드의 응집 과정을 억제하면 아밀로이드 퇴적물의 형성을 막을 수 있고, 따라서 알츠하이머 증후군을 예방하거나 완화시킬 수 있다.
연구팀은 생체 친화적 유기 화합물인 포르피린 유도체와 청색 LED 광을 이용해 베타-아밀로이드 응집을 효과적으로 억제했다.
포르피린과 같은 광감응제는 빛 에너지를 흡수해 여기 상태가 된 후 바닥상태로 돌아가며 활성 산소를 생성한다. 생성된 활성 산소가 베타-아밀로이드 단량체와 결합해 산화시킴으로써 베타-아밀로이드의 응집을 방해하는 원리이다.
연구팀은 이를 무척추 동물에 적용해 알츠하이머 초파리 모델에서 신경 및 근육 접합부의 손상, 뇌 신경세포의 사멸, 운동성 및 수명 감소 등 알츠하이머 증후군에서 발견되는 증상의 완화를 확인했다.
빛을 이용한 치료법은 기존 약물 치료에 비해 적은 양의 약물로도 높은 치료효과를 볼 수 있고 부작용이 적다는 장점이 있다. 뇌질환에 적용할 수 있는 기술 개발이 완료된다면 그 활용도가 높을 것으로 예상된다.
박 교수는 “빛과 광감응화합물을 사용해 무척추 동물(초파리)에서 베타-아밀로이드 응집과 독성을 막는 것을 세계 최초로 확인한 것에 의의가 있다”며 “향후 다양한 유기 및 무기 광감응소재들의 적용가능성을 알아보고, 알츠하이머 마우스 등 척추동물을 대상으로 알츠하이머병의 광역학적 치료 가능성을 연구하고 싶다"고 말했다.
□ 그림 설명
그림 1. 포르피린과 빛을 이용해 알츠하이머 원인 물질의 응집을 제어한 모식도
그림2. 앙케반테 케미에 게재된 표지논문
2015.09.21
조회수 11613
-
단백질의 생체분자에 대한 결합력 조절기작 규명
우리 학교 생명과학과 김학성 교수와 서문형 박사 연구팀은 단백질이 생체 내 분자를 인식하고 기능을 수행하는데 중요한 단백질의 생체분자에 대한 결합력을 조절하는 메커니즘을 새롭게 밝혀냈다 .
연구 결과는 과학 분야의 권위지인 ‘ 네이처 커뮤니케이션즈 (Nature Communications)’ 24일자 온라인판에 게재됐다.
연구팀은 지난해에 단백질의 생체분자 인식 메커니즘을 최초로 밝혀내 Nature Chemical Biology 에 발표한데 이어 , 이번 연구를 통해 단백질이 생체분자에 대한 결합력을 조절하는 핵심 원리를 규명함으로써 생체 내 단백질의 기능과 조절 기작을 보다 명확하게 이해하는 데 크게 기여할 것으로 전망된다 .
효소나 항체 , 호르몬 등으로 대표되는 단백질은 모든 생명체 내에서 다양한 생체 분자를 특이적으로 인식하여 신호전달 , 면역반응 등을 정교하게 진행시켜 생명현상을 유지하고 조절하는데 가장 중요한 역할을 담당한다 . 이런 과정에서 단백질이 생체분자에 대한 결합력은 두 분자 사이의 결합지속 시간이 정해지고 , 단백질의 생체 내 기능을 결정하고 조절하는 핵심 요인이다 . 이번 연구 결과를 바탕으로 단백질 활성을 보다 정교하게 조절하는 것이 가능해질 것으로 예상된다 .
연구팀은 단백질들이 생체분자를 인식하는 과정에서 , 단백질의 생체분자에 대한 결합력은 두 분자 사이의 비 공유 상호작용의 크기뿐만 아니라 단백질의 고유한 동역학적 성질도 긴밀하게 연관되어 있다는 점에 주목했다 .
김 교수 연구팀은 단백질의 생체분자에 대한 결합력을 결정하는 기본 기작을 규명하기 위해 , 단백질의 allosteric site 에 돌연변이를 가하여 동일한 화학적 접촉면을 가지고 있지만 수십 배에서 수백 배의 결합력 차이를 보이는 다양한 돌연변이 단백질을 제작하였다 . 단백질의 allosteric site 는 생체분자와 직접 결합하는 부위는 아니지만 생체 분자 인식에 영향을 미치는 부위를 지칭한다 .
제작된 돌연변이 단백질들의 고유한 동역학적 성질을 단 분자 수준에서 실시간으로 분석하여 , 생체분자에 대한 결합력이 단백질의 고유한 동력학적 특성인 구조 열림 속도에 직접적으로 연관되어 있음을 밝혀냈다 .
또한 , 단백질이 생체 분자와 직접 결합하는 부위가 아닌 allosteric site 에서 단백질의 고유한 특성을 변화시킬 수 있음을 증명함으로써 , 생체 내 단백질들의 기능을 조절하는 새로운 방법론을 제시하였다 .
연구팀의 이번 결과는 다양한 생명현상을 관장하는 단백질의 특성을 보다 깊이 이해하는데 큰 역할을 하였으며 , 단백질의 생체분자에 대한 결합력을 결정하는 원리를 단백질의 동력학적 관점에서 입증한 것으로 평가되고 있다 .
김 학성 교수는 이번 연구에 대해 “ 지금까지는 단백질의 생체분자에 대한 결합력은 두 분자 사이의 직접적인 상호작용에 의해 결정되는 것으로 알려져 왔지만 , 본 연구를 통해 단백질의 고유한 동력학적 특성 , 즉 구조 열림 속도도 결합력을 결정하는 데 핵심적인 역할을 한다는 새로운 사실을 밝힌 것이 큰 의미가 있다 ” 라고 의의를 밝혔다 .
그림 1. 단백질의 안정한 상태인 열린 구조 (open) 와 불안정한 상태인 부분적으로 열린 구조 (partially closed) 사이의 전환 속도 (kopening; opening rate) 와 결합력 (Kd) 사이의 상관관계 그래프
2014.04.25
조회수 17462
-
신개념 심혈관질환 진단시스템 개발
- 심혈관질환 진단을 위한 호모시스테인 분석법 개발 연구에 큰 진보- 분석화학분야 세계적 학술지‘어널리티컬 케미스트리誌’4월호 표지논문 선정
신속하고 간편한 신개념 심혈관질환 진단시스템이 국내연구진에의해 개발됐다.
우리학교 생명화학공학과 박현규 교수는 대장균을 이용해 심혈관질환을 유발하는 혈액 속 호모시스테인(Homocysteine)의 농도를 분석하는 기술을 개발했다.
연구팀은 유전자 재조합을 통해 서로 다른 두 개의 생물발광 대장균 영양요구주를 만들어 호모시스테인에 대한 두 균주의 성장차이를 생물발광 신호로 분석했다.
이 기술은 많은 수의 혈액 샘플을 대량으로 동시에 분석할 수 있어 매우 경제적이기 때문에 최근 급성장하는 호모시스테인 정량검사 분야의 상업화에 커다란 진보를 일궈낸 것으로 평가받고 있다.
기존의 효소반응 또는 고성능 액체크로마토그래피(High Performance Liquid Chromatography)를 이용하는 방법은 비교적 긴 시간이 소요되며 가격이 비싼 단점이 있었다.
연구팀은 이를 극복해 아무런 추가 조작 없이 유전자 재조합 대장균을 배양하고 이에 따라 자동적으로 생성되는 발광신호를 측정함으로써 호모시스테인을 매우 신속하고 간편하게 측정할 수 있었다.
박현규 교수는 “이 기술은 심혈관질환을 유발하는 호모시스테인을 유전자 재조합 대장균을 이용해 정확하게 분석하는 신개념 분석법으로 학계에서 최초로 발표된 신기술이다”라고 말했다.
이번 연구는 그 중요성을 인정받아 분석화학 분야의 세계적인 학술지인 ‘어낼리티컬 케미스트리(Analytical Chemistry)’ 4월호(4월 15일자) 표지논문으로 선정됐다.
한편, 생명화학공학과 박현규 교수와 우민아 박사과정 학생이 주도한 이번 연구는 한국연구재단(이사장 오세정)이 시행하는 ‘중견연구자지원사업(도약연구)’의 지원을 받아 수행됐다.
2011.04.27
조회수 16657
-
랩온어칩 저널 한국 특집호 편집 발간
우리학교 바이오및뇌공학과 박제균 교수가 서울대학교 기계항공공학부 서갑양 교수와 공동으로 편집한 ‘랩온어칩(Lab on a Chip)’지의 한국 특집호가 2011년 1월호로 발간됐다.
이번 호에는 그동안 국내 나노기술의 발전에 기여해 온 학계, 연구소, 기업의 랩온어칩 전문가 13명의 논문과 함께 미세유체기술 및 랩온어칩의 상용화와 관련된 이들 전문가들의 의견을 별도의 지면을 통해 소개했다. 박 교수는 2010년부터 랩온어칩의 편집위원으로 활동 중이다.
랩온어칩 저널에서는 학회지 발간 10주년을 기념하기 위한 국가별 기념 특집호를 금년 초부터 준비해 왔으며 지난 9월 스위스 편을 시작으로 내년 중반까지 랩온어칩 분야의 기여도가 높은 10 개국에 대해 특집호를 발간 중에 있다.
랩온어칩지는 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 화학, 물리학, 생물학 및 바이오공학을 위한 미세유체기술 및 마이크로타스(microTAS) 분야의 최고 전문 국제학술지이다. 과학논문 5년간 평균 인용지수는 6.9이다.
참고 : http://pubs.rsc.org/en/Journals/JournalIssues/LC#/Issues
2010.12.21
조회수 16525
-
이효철 교수, ‘ChemPhysChem’지 편집위원 선임
우리학교 화학과 이효철 교수가 물리화학분야에서 저명한 학술지인 ‘켐피즈켐(ChemPhysChem) 誌’ 편집위원으로 선임되어 2011년부터 2014년까지 4년 간 편집위원으로 활동하면서 논문 심사 및 편집 방향 설정 등에 참여하게 된다.
이 교수는 세계 최초로 액체 상태의 분자 구조 변화를 실시간 관찰해 사이언스지 및 네이처 자매지 등에 논문을 게재하는 등 분자구조동역학 분야에서 주목할 만한 업적을 쌓았다.현재 교육과학기술부와 한국연구재단이 지원하는 창의적연구사업의 시간분해회절연구단장을 맡고 있다.
ChemPhysChem 誌는 2000년 창간되어 물리화학 분야에서 저명한 학술지로 알려져 있으며, 편집위원들 중에는 아메드 즈웨일(Ahmed Zewail), 리원철(Yuan-Tseh Lee), 게르하르트 에르틀(Gerhard Ertl) 등 세 명의 노벨 화학상 수상자들과 물리화학 각 분야의 권위자들이 포진되어 있다.
2010.12.02
조회수 13815
-
김상규교수 화학반응의 비밀을 밝히다
네이처 케미스트리誌 발표, "화학반응을 원하는 대로 제어할 수 있는 방법 개발 가능성 열어"
화학반응의 핵심적인 개념이지만, 지난 60년간 학계에서 이론적으로만 예측되었던 원뿔형 교차점(conical intersection)의 존재와 분자구조가 국내연구진에 의해 실험적으로 규명되었다.
우리학교 김상규 교수와 임정식 박사가 주도한 이번 연구는 교육과학 기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 중견 연구자지원사업(도약연구)과 우수연구센터(SRC)사업의 지원을 받아 수행되었고, 연구결과는 화학분야 세계 최고 권위의 과학 전문지인 ‘네이처 케미스트리(Nature Chemistry)’지 온라인 속보(7월 4일자)에 주요 논문으로 게재되었다.
김상규 교수 연구팀은 지금까지 이론적으로만 존재했던 원뿔형 교차점을 실험적으로 구체화하고, 화학반응의 핵심이론을 검증했으며, 화학 반응을 제어하는 새로운 방법론 구축에 성공하였다.
원뿔형 교차점은 화학반응은 물론이고, 우리 눈의 망막에서 일어나는 광이성질체화(光異性質體化)* 반응 및 DNA의 강한 자외선 보호 메커니즘 등 화학과 의학 문제를 설명하는데 필수적인 매우 중요한 화학적 개념이다. ※ 광이성질체화(photoisomerization) : 분자가 빛을 흡수하여 들뜬상태를 거쳐 이성질체화를 일으키는 현상
학계는 눈 깜짝할 사이에 사라지고, 다차원적 위치에너지의 복잡한 구조를 지닌 ‘화학반응의 특이점’에 접근하는 것이 사실상 불가능해, 지금까지 원뿔형 교차점의 존재를 실험적으로 규명하기 위해 무수히 시도하였지만 실패하였다.
김상규 교수팀은 서로 다른 두 개의 전자적 양자상태가 화학반응을 하면서 중첩하는 지점에 발생한 원뿔형 교차점을 관측하고, 에너지 위치와 자세한 분자구조를 유추해냈다.
김 교수팀은 레이저와 분자선 기술을 사용하여 분자의 특정 양자 상태에서 일어나는 화학반응의 자세한 동역학적 움직임을 살펴본 결과, 두 개의 서로 다른 전자적 양자상태가 중첩될 때 뚜렷한 공명 (resonance)현상이 발생하며, 이것은 원뿔형 교차점에 의한 것임을 확인하였다.
김상규 교수는 “화학반응에서 전자와 핵 사이에 상호작용이 가장 크게 일어나는, 화학반응의 핵심개념인 원뿔형 교차점을 최초로 관측한 점은 이번 연구의 가장 큰 성과로, 향후 화학반응을 원하는 대로 제어하여, 치료 및 제약 등 다각적으로 활용될 수 있는 원천적 기초지식 기반을 마련하였다”라고 연구의의를 밝혔다.
2010.07.06
조회수 19745
-
배병수교수팀, 새로운 LED봉지재 개발
신소재공학과 배병수 교수연구팀이 고휘도 LED 개발에 필수적인 고굴절률 고내열성 하이브리드소재 LED 봉지재를 개발했다. LED 봉지재는 백색 빛을 내는 형광체를 포함해 LED 칩을 둘러싸서 외부 충격과 환경 등으로 부터 LED 칩을 보호하는 핵심 소재다. LED의 빛은 결국 봉지재를 통해 나오기 때문에 빛의 흡수, 산란, 굴절을 최소화한 고휘도 LED 구현을 위해 고굴절률 투명 봉지재 소재의 개발이 필요하다.
또, 봉지재는 외부 노출에 견디는 내후성 외에 LED칩에서 발산되는 열을 견디는 내열성이 매우 중요하다. 특히, 향후 상용화하게 될 고출력 조명에서는 매우 높은 열이 발생될 것으로 예상되기 때문에 이를 상용화하기 위해서는 고내열성 봉지재 소재의 개발이 필수적이다.
기존 에폭시 봉지재는 최근 고내열성의 요구로 실리콘소재로 대체되고 있으며, 현재 해외 주요 실리콘업체들이 국내에 독점 공급한다. 일반적으로 굴절률이 낮은 메틸 실리콘소재에 비해 굴절률이 높은 페닐 실리콘소재가 사용된다. 그러나 고온에서 쉽게 노란색으로 변색(황변)되어 전 세계 업체들은 굴절률을 높이면서 내열성이 우수한 소재를 개발하기 위해 노력하고 있다.
배교수 연구팀은 기존 LED 봉지재 소재인 실리콘소재의 제조방법과 달리, 실리카 유리 제조에 사용하는 솔-젤 공정과 함께 실리콘 제조공정인 하이드로실릴레이션(Hydrosilylation) 반응을 함께 사용해 다량의 페닐기를 포함하고 치밀한 네트워크 분자구조를 갖는 투명 하이브리드소재를 개발했다. 이번에 개발된 하이브리드재료는 1.56이상의 고굴절률을 가지면서 200도 이상의 고온에서도 황변이 일어나지 않는 고내열성을 보인다. 현재까지 전 세계적으로 1.53이상의 고굴절률 투명소재가 200도 온도에서 황변이 일어나지 않는 고내열성은 아직 보고되지 않았다.
이와 함께 하이브리드소재는 기존 실리콘소재에 비해 기체투과성이 낮으며, 경도가 높아 장기 안정성 높은 고휘도 LED 봉지재로 매우 유리하다. 이번에 개발된 하이브리드소재 봉지재를 사용하는 LED 제품은 일반 조명용 제품은 불론 LED TV용 백라이트 광원용 제품에 널리 활용될 수 있다. LED 산업의 성장과 함께 최근 세계 주요 소재업체들이 줄이어 고성능 봉지재 소재들을 출시하고 있는 시점에, 국내에서 세계 최초로 봉지재 원천소재를 개발한 것은 국내 LED산업의 발전은 물론 소재산업 위상 제공에 기여할 것으로 기대된다.
한편, 이번 연구결과는 미국화학회에서 발간하는 재료화학(Chemistry of Materials)저널 최근호에 게재됐으며, 관련 원천소재 특허 3건을 국내외에 출원했다. 연구팀은 현재 국내 실리콘 제조업체인 (주)KCC와 이번에 개발된 봉지재가 실제 LED칩에 실장되는 생산 공정에 적합하도록 최적화하고 굴절률을 더 높여 해외 선진사 제품 대비 경쟁력 높은 제품으로 상용화할 계획이다.
<사진설명>배교수 연구팀이 개발한 하이브리드소재 LED 봉지재와 해외 선진사 상용 실리콘 LED봉지재의 250도 내열성 비교평가결과. 상용 제품은 황변이 일어난 반면, 개발 제품은 투명하고 굴절률이 높다.
2010.06.16
조회수 19188