-
인공지능 이용 면역항암 세포 3차원 분석기술 개발
우리 대학 물리학과 박용근, 생명과학과 김찬혁 교수 공동연구팀이 면역항암 세포의 활동을 정밀하게 측정하고 분석할 수 있는 새로운 3차원 인공지능 분석기술을 개발했다고 28일 밝혔다.
체내에서 면역세포를 추출한 후, 외부에서 면역 능력을 강화시키고 다시 환자에게 주입해 암을 치료하는 방식을 `입양전달 면역세포 치료(adoptive immune cell therapy)'라고 부른다. 이 치료방식은 면역세포 치료법 중 가장 많은 주목을 받는 기술이다. `키메릭 항원 수용체' 또는 `CAR(Chimeric Antigen Receptor)'라고도 불리는 데 유전자 재조합기술을 이용해 T세포와 같은 면역세포를 변형해 암세포와의 반응을 유도해 사멸시키는 치료 방법이다.
특히 CAR-T세포 치료는 높은 치료 효과를 보여 차세대 암 치료제로 급부상하고 있다. 2017년 난치성 B세포 급성 림프구성 백혈병 치료제 판매 승인을 시작으로 현재 3종의 CAR-T 치료제가 판매 승인을 받았으며, 전 세계적으로 약 1,000건 이상의 임상 시험이 진행 중이다. 그러나 아직 우리나라에서는 진행 중인 임상 시험이 전무한 실정이다.
CAR-T 기술을 이용한 암 치료 방법들이 속속 개발되고 있지만, CAR-T세포에 대한 세포‧분자 생물학적 메커니즘은 아직 많은 부분이 알려지지 않았다. 특히, CAR-T세포가 표적 암세포를 인지해 결합한 후 `면역 시냅스 (immunological synapse, 이하 IS)'를 형성해 물질을 전달하고 암세포의 사멸을 유도하는데, 두 세포 간의 거리와 같은 IS의 형태 정보는 T세포 활성화 유도와 관련이 높다고 알려져 있지만 구체적인 내용을 파악하기 어렵기 때문에 이에 대한 연구가 활발히 진행 중이다.
우리 대학 물리학과 박용근, 생명과학과 김찬혁 교수 공동연구팀은 CAR-T세포의 IS를 정밀하고 체계적으로 연구할 수 있는 새로운 기술을 개발했다. 3D 홀로그래피 현미경 기술을 이용해, 염색이나 전처리 없이 살아있는 상태의 CAR-T세포와 표적 암세포 간의 상호작용을 고속으로 측정하고 기존에는 관찰하기 어려운 CAR-T와 암세포 간의 IS를 고해상도로 실시간 측정했다. 또한 이렇게 측정한 3D 세포 영상을 인공지능 신경망(Convolutional Neural Network, CNN)을 이용해 분석하고, 3차원 공간에서 정확하게 IS 정보를 정량적으로 추출할 수 있는 기술을 자체 개발했다.
공동연구팀은 또 이 기술을 활용해 빠른 CAR-T 면역 관문 형성 메커니즘을 추적할 수 있었을 뿐만 아니라, IS의 형태학적 특성이 CAR-T의 항암 효능과 연관이 있음을 확인했다. 연구팀은 3차원 IS 정보가 새로운 표적 항암 치료제의 초기 연구에 필요한 정량적 지표를 제공할 것이라고 기대하고 있다.
이번 연구에는 우리 대학 기술을 바탕으로 창업한 2개 기업이 공동으로 참여했다. 3차원 홀로그래픽 현미경을 상업화한 토모큐브 社의 현미경 장비를 이용해 면역세포를 측정하는 한편 토모큐브 社의 인공지능 연구팀이 알고리즘 개발에 참여했다. 이밖에 국내 최초 CAR-T 기반 치료제 기업인 ㈜큐로셀도 연구에 함께 참여해 이 같은 성과를 거두는 데 성공했다.
물리학과 이무성 박사과정 학생, 생명과학과 이영호 박사, 물리학과 송진엽 학부생 (現 메사추세츠 공과대학(MIT) 물리학과 박사과정)이 공동 제1 저자로 참여한 이번 연구는 국제적으로 권위를 인정받는 생물학술지인 `이라이프(eLife)' 12월 17일 字 온라인판을 통해 공개됐으며 지난 21일 字에 공식 게재됐다.
(논문명 : Deep-learning based three-dimensional label-free tracking and analysis of immunological synapses of CAR-T cells)
한편 이번 연구는 한국연구재단 리더연구사업, 바이오·의료기술개발사업, 중견연구자지원사업, KAIST Up program의 지원을 받아 수행됐다.
2021.01.29
조회수 70614
-
세계 최대 규모의 3차원 암 게놈 지도 구축
우리 대학 생명과학과 정인경 교수가 한국생명공학연구원 국가생명연구자원정보센터(KOBIC) 이병욱 박사 연구팀과 공동연구를 통해 전 세계 최대 규모의 3차원 암 게놈 지도 데이터베이스를 구축해 공개했다고 28일 밝혔다. (데이터베이스 주소: 3div.kr)
공동연구팀은 인체 정상 조직과 암 조직, 그리고 다양한 세포주 대상 3차원 게놈 지도를 분석 및 데이터베이스화 해, 약 400여 종 이상의 3차원 인간 게놈 지도를 구축했으며, 이를 통해 암세포에서 빈번하게 발생하는 대규모 유전체 구조 변이(structural variation)의 기능을 해독할 수 있는 신규 전략을 제시했다.
정인경 교수, 이병욱 박사가 공동 교신 저자로 참여한 이번 연구 결과는 국제 학술지 `핵산 연구(Nucleic Acid Research)' 저널 11월 27일 字 온라인판에 게재됐다. (논문명 : 3DIV update for 2021: a comprehensive resource of 3D genome and 3D cancer genome)
현재까지 많은 연구를 통해 암세포 유전체에서 발생하는 돌연변이를 규명해 암의 발병 기전을 이해하려는 시도가 있었다. 최근에는 유전자에서 발생하는 점 돌연변이뿐 아니라 대규모 구조 변이에 관한 연구가 활발하게 이루어지고 있으며, 이들을 활용한 신규 암세포의 특이적 유전자 발현 조절 기전 규명의 중요성이 제시되고 있다.
하지만, 대다수의 구조 변이는 DNA가 단백질을 생성하지 않는 비 전사 지역에 존재해, 1차원적 게놈 서열 분석만으로 이들의 기능을 규명하는 데는 한계가 있었다.
한편 지난 10년간 비약적으로 발전한 3차원 게놈 구조 연구는 비 전사 지역에 존재하는 대규모 구조 변이로 인해 생성되거나 소실되는 염색질 고리 구조(chromatin loop)를 3차원 게놈 구조 해독을 통해 규명하면 유전자 조절 기능을 해독할 수 있다는 모델을 제시하고 있다.
이에 정인경 교수 연구팀은 지금까지 공개된 모든 암 유전체의 3차원 게놈 지도를 확보해 전 세계 최대 규모의 3차원 암 유전체 지도를 작성했다. 그리고 대규모 구조 변이와 3차원 게놈 지도를 연결할 수 있는 분석 도구들을 개발했다. 그 결과 연구팀은 대규모 암 유전체 구조 변이에 따른 3차원 게놈 구조의 변화 그리고 이들의 표적 유전자를 규명할 수 있었다.
공동 교신 저자 이병욱 박사는 "최근 세포 내 3차원 게놈 구조 변화가 다양한 질병, 특히 암의 원인이 된다는 것이 밝혀지고 있는데, 이번 연구를 통해 이를 연구할 수 있는 도구들을 세계 최초로 개발했다ˮ라며 "이번 연구 결과를 활용하면 암의 발병 원리를 이해하고 더 나아가 항암제 개발에도 중요한 정보를 제공할 것으로 기대된다ˮ라고 말했다.
정인경 교수는 "암에서 빈번하게 발생하는 대규모 구조 변이의 기능을 3차원 게놈 구조 해독을 통해 정밀하게 규명 가능함을 보여줬다ˮ라며 "이번 연구 결과는 아직 해독이 완벽하게 이루어지고 있지 않은 암 유전체를 정밀하게 해독하는 기술을 한 단계 더 발전시키는 계기가 될 것이다”라고 말했다.
이번 연구는 한국연구재단 기반산업화 인프라 그리고 서경배과학재단의 지원을 통해 수행됐다.
2020.12.28
조회수 46863
-
암 진단에 필요한 새로운 형광 증폭 기술 개발
우리 대학 신소재공학과 장재범 교수 연구팀이 암 진단에 필요한 새로운 형광 신호 증폭 기술을 개발했다고 17일 밝혔다. 연구 결과는 국제 학술지인 영국왕립화학회(Royal Society of Chemistry)의 `나노스케일(Nanoscale)'誌 11월 13일 字에 게재됐다. (논문명: FRACTAL: Signal amplification of immunofluorescence via cyclic staining of target molecules)
※ 저자 정보: 조예린(신소재공학과 학사과정 학생, 제1 저자), 서준영(신소재공학과 박사과정 학생, 제2 저자), 장재범 교수(교신저자) 등 총 8명
최근 3D 전체 조직 영상화(이미징)를 가능하게 하는 생체조직 *팽창 기술(ExM) 및 투명화 기술(CLARITY, 3DISCO, CUBIC)은 복잡한 세포 간 상호작용 및 역할을 밝혀내는 핵심적인 역할을 하고 있다. 하지만 큰 부피 내부의 세포 변화를 관찰하기 위해서는 약한 형광 신호를 증폭해 높은 이미지 처리량을 갖는 기술이 필요하다.
※ 팽창 현미경 (Expansion Microscopy): 조직을 팽창시켜 일반 현미경으로 초고해상도를 얻을 수 있는 기술
※ 조직 투명화 기술 (Tissue Clearing System): 빛의 산란을 최소화하고 투과도를 극대화하여 3D 전체 조직을 이미징하는 기술
지금까지 신호 증폭 기술은 다양한 화학 반응으로 개발돼왔는데, 이들 중 많은 기술은 단일 화학 반응을 이용하기 때문에 다중 표지 신호 증폭 영상화를 위해서는 단일 신호 증폭과 비활성화 과정을 채널별로 반복해야 하는 단점이 있고, 유전자(DNA) 기반의 신호 증폭 기법은 서로 다른 항체에 대한 유전 물질 분자 결합의 최적화 과정이 필요하므로 일반적인 생물 실험실에서 사용이 어렵다.
장재범 교수 연구팀은 이러한 문제점 개선을 위해 현재 상용화돼 있는 형광 분자가 표지된 항체를 사용해, 추가적인 최적화 과정이 필요 없는 신호 증폭 기술에 주목했다.
결과적으로 연구팀은 `프랙탈(FRACTAL, Fluorescence signal amplification via repetitive labeling of target molecules)'이라는 새로운 신호 증폭 기술을 개발했다. 프랙탈 기술은 항체 기반의 염색 방법으로, 신호 증폭 과정이 매우 간단하다는 특징이 있다. 이 기술은 신호 증폭을 위해 특수한 화학 물질을 필요로 하지 않으며, 형광 분자가 표지된 2차 항체의 반복적인 염색을 통해 형광 신호를 증폭시킨다.
이 기술은 한 종류의 1차 항체, 두 종류의 2차 항체, 총 세 종류의 항체를 이용하는 아주 간단한 기술이다. 신호 증폭 과정은 표적 단백질에 대한 1차 항체 및 첫 번째 2차 항체 염색으로 시작되며, 그다음으로 첫 번째 2차 항체에 결합하는 두 번째 2차 항체의 염색이 이뤄진다. 두 번째 2차 항체의 숙주(host)와 1차 항체의 숙주(host)는 같으며, 그다음 염색은 다시 두 번째 2차 항체에 결합하는 첫 번째 2차 항체의 염색으로 이어진다.
예를 들어 토끼의 1차 항체를 사용하고 당나귀의 항-토끼 2차 항체를 첫 번째 2차 항체로 사용했다면 토끼의 항-당나귀 2차 항체를 두 번째 2차 항체로 사용하게 된다. 그러면 두 번째 2차 항체에는 첫 번째 2차 항체가 결합하게 되고 그 반대의 경우로도 결합해 염색을 이어나가게 된다.
이 과정의 반복을 통해 연구팀은 기존 형광 신호를 9배 이상 증폭시켰으며, 이는 같은 밝기를 얻는 데 필요한 영상화 시간을 9배 이상 줄일 수 있다는 결과를 얻었다. 연구팀은 초고해상도 현미경(STORM) 분석을 통해 염색 횟수에 따라 항체가 균일한 결합 층을 형성하며 형광 신호를 증폭시키는 현상을 확인했다.
연구팀은 이 기술을 서로 다른 종으로부터 유래된 직교적인(orthogonal) 항체 쌍에 적용해, 동시 다중 표지 신호 증폭 영상화를 구현했으며, 팽창 현미경에도 적용해 팽창 후에도 높은 형광의 강도를 갖는 형광 신호 증폭 기술을 구현했다.
이 기술은 간단한 항체-항원 반응에 기반해 형광 신호를 증폭시키는 기술로, 영상을 통한 생체조직의 분석 및 치료기술 개발, 다지표 검사, 의료 및 신약 개발 분야에 이바지할 것으로 연구진은 기대하고 있다.
제1 저자인 조예린 학생은 "높은 이미지 처리량을 가진 이 기술은 디지털 병리 분야의 발전에 중추적인 영향을 미칠 것ˮ이며, "생체 내 다중지표에 대한 정보를 정밀하게 제공해 현대 의약 분야의 의약품 분석 및 치료 시스템에 직접적으로 응용될 수 있다ˮ라고 말했다.
장재범 교수도“이 기술은 환자 생체 검사 조직 내부에서 매우 중요하지만 낮은 수준으로 발현되는 바이오마커들을 정확하게 이미징 할 수 있게 해주기 때문에, 암 진단 및 면역 항암제 반응률 예측 등에 큰 도움이 될 것으로 기대된다.”라고 강조했다
한편 이번 연구는 과학기술정보통신부가 지원하는 뇌과학원천기술개발 과제와 KAIST 학부연구생프로그램(URP)의 지원을 받아 수행됐다.
2020.12.18
조회수 45569
-
차세대 양자광원을 위한 반도체 양자점 대칭성 제어기술 개발
우리 대학 물리학과 조용훈 교수 연구팀이 LED에 널리 사용되는 질소화합물 반도체를 이용해 대칭성이 매우 높은 삼각형 형태의 양자점(퀀텀닷)을 형성하고 제어하는 데 성공, 광자들 사이에 얽힘을 발생시키는 차세대 양자광원 개발에 핵심적인 양자점 제어 기술을 갖추게 됐다고 13일 밝혔다.
‘얽힘(entanglement)’은 입자들이 쌍으로 상관관계를 가져 거리에 상관없이 얽혀 있는 쌍의 한쪽 특성을 측정하면 나머지 한쪽의 특성을 즉시 알게 되는 현상으로, 전문가들은 얽힘이라는 양자역학적인 현상을 활용하면 양자통신과 양자컴퓨팅과 같은 양자정보에 필요한 기술 개발과 함께 물리학적으로 새로운 주제들이 개척될 것으로 기대하고 있다.
반도체 양자점(Quantum Dot)은 원하는 순간에 광자를 한 개씩 방출하는 대표적인 고체 기반의 양자광 방출 소자로써 널리 연구되고 있다. 특히, 반도체 양자점의 대칭성을 제어해 양자점 내부의 미세 에너지 구조를 정교하게 조절할 수 있다면, 두 개의 광자를 양자얽힘 상태로 만드는 편광얽힘 광자쌍 방출이 원리적으로 가능하므로 이를 이용한 양자통신 및 양자컴퓨팅 분야에서 주목받고 있다.
격자구조를 갖는 반도체는 일반적으로 원자들을 한 층씩 천천히 쌓아 올리는 박막 증착기술을 통해 제작된다. 이때 발광층을 형성하기 위해 격자크기가 다른 층을 쌓게 돼 반도체 내부에 응력이 발생하게 되는데, 발광층이 갖는 응력을 에너지로 사용해 양자점이 무작위적으로 형성되므로 양자점의 크기의 균질성과 대칭성이 떨어지고 근본적으로 양자점의 위치와 모양을 제어할 수 없는 한계를 가진다. 따라서 얽힘 광자쌍 방출소자를 제작하기 위해서는 제작단계에서 위치와 대칭성을 제어할 수 있는 기술이 필수적이다.
한편, 청⦁녹색 LED에 사용되는 물질로 잘 알려진 질소화합물 반도체는 상온에서도 양자적인 특성을 유지할 수 있어 상온에서 안정적으로 구현할 수 있는 양자광원 소자의 후보 물질로도 주목받고 있다. 그러나, 이 물질계는 양자점의 대칭성이 조금만 무너져도 양자역학적 얽힘 특성을 쉽게 잃어버리게 되므로 높은 수준의 대칭성 제어 기술을 확보하지 않고는 실질적으로 구현이 쉽지 않은 한계가 있었다.
조용훈 교수 연구팀은 양자점의 위치와 대칭성을 높은 수준으로 제어하기 위해, 삼각형 형태의 나노 배열 패턴을 갖는 기판 위에 삼각 피라미드 형태를 갖는 질소화합물 반도체 나노 구조를 우선 제작했다. 이후 양자점을 성장하는 단계에서 나노 피라미드 꼭지점 부분의 기하학적 형태를 조절하면서, 열역학적 안정성에 의해 자체적으로 성장 방식이 조절되는 자기제한적 성장메커니즘을 적용했다.
그 결과 육각형 결정구조를 갖는 질소화합물 반도체에서 일반적으로 나타나는 육각 대칭성을 갖는 비균일한 양자점 대신, 삼각 대칭성을 갖는 고품위의 양자점을 최초로 구현함으로써 질소화합물 반도체 양자점의 대칭성을 정교하게 제어하는 데 성공했다.
연구팀은 제작된 나노 구조체의 발광을 분석하기 위해 공간분해능이 수 나노미터 수준으로 좋은 주사전자현미경을 이용해 발광을 측정, 삼각 피라미드의 꼭지점에 양자점이 안정적으로 형성되었음을 확인했고, 시간에 따른 광자 간 상관관계 측정을 통해 양자광이 방출되는 것을 실험적으로 관측했다.
또한, 성장된 양자점의 비대칭성 정도를 가늠할 수 있는 양자광의 편광도와 미세구조 분리 정도를 측정해 높은 대칭성을 갖는 삼각 양자점이 형성되었음을 실험적으로 확인했으며, 이를 이론적 계산 결과와 비교함으로써 측정 결과의 타당성을 확보했다.
이번 연구에서는 기존에 질화물 반도체 양자점의 비대칭성과 높은 편광도를 이용해 상온 단일광자 방출기 제작에 집중해 오던 방식에서 벗어나, 양자점의 대칭성을 정밀하게 조절해 편광얽힘 광자쌍 방출기로도 응용 가능함을 제안했다. 또한 범용 반도체 박막 증착장비와 미세 패턴 기술을 사용했기 때문에 산업적인 측면에서 확장성이 높을 것으로 기대된다.
연구를 주도한 조용훈 교수는 "반도체 양자점을 제작하는 과정에서 발생하는 양자점의 비대칭성을 효과적으로 제어하여 양자점 내부의 미세 에너지 구조를 정교하게 조절할 수 있음을 보여준 결과”라며, “상온에서도 동작이 가능한 질소화합물 반도체 양자점을 이용해 편광얽힘 광자쌍 방출소자와 같은 차세대 양자광원 개발에 활용될 수 있을 것”이라고 의미를 말했다.
우리 대학 물리학과 여환섭 박사가 제1 저자로 참여한 이번 연구 결과는 삼성미래기술육성사업 등의 지원을 받아 수행됐으며, 나노분야 국제 학술지인 `나노 레터스(Nano Letters)' 12월 9일 字에 보충 표지와 함께 정식 출간됐다. (논문명: Control of 3-fold symmetric shape of group III-nitride quantum dots: Suppression of fine structure splitting / 질소화합물 반도체 양자점의 삼각 대칭적 모양 제어: 미세구조 분리현상의 완화)
2020.12.14
조회수 43139
-
난치성 악성 위암의 분자병태생리 기전 최초 규명
우리 대학 바이오및뇌공학과 김필남 교수, 최정균 교수 연구팀은 연세대학교 세브란스 병원 정재호 교수 연구팀과 공동연구를 통해 종양 미세환경의 물리적 인자[세포기질의 강성도 증가]가 암세포의 악성화를 촉진하는 분자후성유전학적 원인을 최초로 규명함으로써 향후 새로운 항암치료전략 수립에 중요한 통찰과 방향을 제시했다.
지금까지 종양연구가 대부분 암세포 자체의 돌연변이나 내부 신호전달 경로에 집중되어 진행되었다면 이번 연구는 암세포가 위치한 종양의 미세환경적 요인이 악성화에 어떤 영향을 주는지를 규명해 종양학 연구의 새로운 패러다임을 제공하고 있다. 최근에 암면역치료의 임상적 성공에 힘입어 *종양미세환경의 면역세포에 대한 관심과 연구가 증가하고 있으나 종양미세환경의 물리적 요인이 암세포의 악성화 및 치료반응에 어떤 영향을 주는지에 대한 연구는 거의 없었다.
연구팀은 생체재료를 활용해 인간의 종양미세환경과 유사한 위암실험모델을 개발하고, 이를 이용하여 단단해진 미세환경에 의한 위암세포의 악성화 메커니즘을 규명했다. 암을 유발하는 단백질로 잘 알려진 YAP (Yes-associated protein)의 DNA 가 단단해진 조직내에서 후성유전학적 변화인 DNA 탈메틸화가 유도되어 악성화가 촉진됨을 밝혔다. 이와 더불어, 본 연구팀은 단단하게 변성된 미세환경을 다시 물렁한 조직으로 변화할 경우, 악성화된 위암 세포에서 역전현상이 일어나 악성화가 약화되고 항암제에 반응하는 세포로 변화함을 확인했다.
이번 연구 결과는 치료가 어려운 난치성 *미만형 위암의 악성화를 촉진하는 원인을 규명함으로써 임상적으로 가장 어려운 scirrhous cancer 의 새로운 치료 가능성을 제시하고, 위암 뿐만 아니라 다양한 암종의 유사한 표현형의 암에 대한 치료 확장성에 기여할 것으로 기대한다.
*종양미세환경: 종양내에 존재하는 암세포, 암의 형성 및 진행에 직/간접적으로 영향을 미치는 주변 조직세포 (면역세포, 섬유아세포, 혈관세포 등) 및 이를 구성하고 있는 *세포외기질물질(Extracellular Matrix) 를 총칭해서 종양미세환경이라고 한다.
*세포외기질: 세포와 세포사이를 연결하고 지탱해주는 지지체의 역할을 하는 물질로 콜라겐과 같은 단백질이 이에 속한다. 세포외기질은 단순한 지지체가 아니라, 이것의 물리적, 화학적 특성이 세포의 운명, 특성 등에 직접적으로 영향을 미친다. 특히, 병적요인으로 인해서 조직 섬유화와 같은 변성이 일어나고 이러한 변성이 암과 같은 질병의 악화의 원인이 된다고 알려져 있다.
*미만성 위암: 위암은 조직학적으로 크게 장형암과 미만 위암으로 분류된다. 장형암의 경우 헬리코박터 감염이나 만성 위축성 위염에 속발하는 위암으로 일반적으로 미만성에 비해 양호한 예후를 보인다. 미만성 위암은 장형암에 비해 암 덩어리를 잘 형성하지 않으며 작은 악성 세포들이 위벽에 퍼져서 침윤과 전이를 잘하며 조기 발견도 어렵다. 40세 미만에서 호발하며 악성도가 매우 높아 치료가 어려운 암으로 알려져 있다.
바이오및뇌공학과 장민정 박사가 제1 저자로 참여한 이번 연구는 국제학술지인 `네이처 바이오메디컬엔지니어링’ 12월 7일 字 온라인 판에 실렸다. (논문명: Matrix stiffness epigenetically regulates the oncogenic activation of the Yes-associated protein in gastric cancer)
이번 연구성과는 한국연구재단 과학기술 분야 기초연구사업인 중견연구자지원사업 및 보건복지부 연구중심병원 R&D 사업의 지원을 통해 수행됐다.
2020.12.10
조회수 38857
-
전산학부 박사과정 학생들, 2020 국가암호공모전 대상 수상
우리 대학 전산학부 정보보호대학원 박사과정 이영민, 이병학, 최원석 학생(지도교수 이주영)이 지난 10월 22일 서울 양재동 엘타워에서 진행된 미래암호워크숍 2020 국가암호공모전에서 “Improved Security Analysis for Nonce-based Enhanced Hash-then-Mask MACs” 논문으로 대상을 수상했다.
‘2020 국가암호공모전’은 국내 암호기술 발전을 위해 국가정보원의 후원으로 한국정보보호학회 한국암호포럼이 개최했으며 상금은 대상 1,000만원을 포함해 총 5,000만원 규모다. 올해 공모전은 암호 원천기술 분야와 암호 기술 응용 및 활용 분야 논문으로 진행되는데, 대상은 두 분야를 통틀어 한 편만 선정됐다.
한편, 같은 연구실 박사과정 이병학, 이영민, 최원석 학생은 최우수상을 수상했고, 박사과정 김성광, 하진철, 최원석 학생은 특별상을 수상했다. 이병학, 김성광 학생은 2019 국가암호공모전에서도 “Tight Security Bounds for Double-block Hash-then-Sum MACs” 논문으로 최우수상을 수상했는데, 이 논문은 올해 최우수 암호학회 Eurocrypt에 발표됐다.
2020.10.26
조회수 21332
-
신소재공학과 염지현, 기계공학과 심기동 교수, 포스코사이언스펠로우 선정
우리 대학 신소재공학과 염지현, 기계공학과 심기동 교수가 포스코청암재단에서 선정하는 제12기 '포스코사이언스펠로우'로 선발됐다고 2020년 9월 7일 발표됐다.
포스코사이언스펠로우십은 2009년에 시작해 대한민국의 미래를 이끌어 갈 과학기술 인재양성을 목표로 매년 기초과학 및 응용과학을 연구하는 유능한 신진교수를 선발하고 있다. 이는 독자적인 연구와 실험을 시작하는 신진교수에게 2년간 총 1억원을 지원하는 명예로운 사업이다. 올해 신진교수 166명이 지원해 8:1이 넘는 치열한 경쟁률 속에서 수상한 만큼 그 의미가 더 깊다.
염지현 교수는 우리 대학 신소재공학과 학사과정을 졸업한 후 미시간대학교에서 박사학위를, MIT에서 포스닥을 하는 동안 Overberger Research Award 등 20개 가까이되는 명예로운 상들을 수상한 실적을 보유하고 있다. 더불어 조교수로 신소재공학과에 부임한지 불과 6개월만에 포스코사이언스펠로쉽을 수상하는 쾌거도 이루었다.
심기동 교수는 우리 대학 기계공학과에서 2012년도 박사 학위를 받고, 하버드 대학교 포스닥 펠로우, 존스홉킨스 대학교 Research Scientist를 거쳐 2018년 2월에 KAIST 조교수로 부임하였다. 현재 iCaRE(in-situ Characterization and Reliability Evaluation) 연구실 학생들과 재료의 기계적 거동을 다양한 length-scale 및 환경 조건에서 이해하기 위한 연구를 진행하고 있다.
염지현, 심기동 교수는 내년 1월부터 2년간 지원을 받을 예정이다.
2020.09.16
조회수 22235
-
에티오피아 장관, KAIST서 4년 연구 끝에 박사학위 취득
올해 지천명(知天命·50세)의 나이를 맞은 에티오피아의 현직 장관이 우리 대학에서 박사학위를 취득해 화제가 되고 있다. 기술경영학부 글로벌IT기술대학원에서 지난 8월 박사학위를 취득한 메쿠리아 테클레마리암(Mekuria Teklemariam) 에티오피아 국무총리자문 장관이 그 주인공이다.
메쿠리아 장관은 2016년 9월 KAIST에서 박사과정 첫 학기를 시작한 지 4년만인 지난 8월 경영학박사 학위를 취득했다.
메쿠리아 장관은 "한국은 지난 수십 년간 정치·경제를 포함한 모든 분야에서 눈부신 발전을 이뤄낸 나라ˮ라면서 "에티오피아의 발전을 위해 성공사례를 보유한 국가의 성장 원동력을 학문적으로 연구해보고 싶었다ˮ라고 유학 배경을 밝혔다.
40세에 도시개발주택부 장관으로 취임해 에티오피아 역사상 최연소 장관이라는 기록을 세운 메쿠리아 장관은 6년의 재임 기간에 신도시·스마트시티 개발, 토지관리, 주택개발 등의 정책을 수립하고 집행하며 에티오피아의 경제 개발을 이끌어왔다.
그러나 그는 자신의 행보에 만족하지 못했다. 외적으로는 여러 가지 성취를 거뒀지만 비슷한 일들을 거듭하다 보니 행정가가 지녀야 할 능력이 정체된다는 고민이 커졌기 때문이다.
학업에 대한 결심을 굳힌 뒤 정부에 사임 의사를 밝혔지만, 국무총리는 현직에 남아 달라고 당부하며 한 가지를 물어왔다. '유학 가려는 이유가 개인의 이력을 위한 것인지 나라를 위한 것인지'를 확인하는 질문이었다.
국무총리의 말은 메쿠리아 장관의 한국행을 결심하는 계기가 됐다. 영국의 개방대학이나 미국 MIT의 최고위 과정을 선택하면 비교적 짧은 시간을 투자해 수월하게 공부할 수 있다는 장점이 있었다. 그러나 최빈국에서 강대국으로 성장한 한국의 사례를 연구하는 것이야말로 자국 발전에 기여하고 싶다는 목적에 가장 부합하는 선택이라고 결론 내린 것이다.
이후, 메쿠리아 장관은 KAIST에 지원했다. 과학기술 분야의 전문성, 탁월한 연구성과, 국제화에 특화된 대학원 과정 등 모든 면에서 학업을 이어가기 가장 좋은 환경이 마련돼 있었기 때문이다.
6개월여의 준비 끝에 2015년 KAIST 대학원에 합격했지만 메쿠리아 장관은 한국 땅을 밟지 못했다. 사임 의사가 또다시 반려된 탓이었다. 그러나 그는 포기하지 않았다. 일단 휴학을 신청한 뒤 지도교수인 기술경영학부 권영선 교수와 함께 계속해서 정부를 설득해나갔다.
메쿠리아 장관의 의지를 확인한 에티오피아 정부는 9인으로 구성된 위원회를 열어 그의 유학에 관한 투표를 진행했다. 다수의 위원이 국가 발전을 위해 학업을 선택한 그의 결정에 지지를 보냈고 도시개발주택부 장관에서 국무총리자문 장관으로 직위를 변경한 끝에 유학길에 오를 수 있었다.
2016년 가을부터 한국 생활을 시작한 메쿠리아 장관은 지난 4년간 학업에 매진했다. 정보격차 해소가 경제성장과 부패통제에 미치는 영향·개발도상국의 초고속인터넷 보급 및 확산정책 등의 주제를 연구해 국내외 학회에서 발표했다.
특히, 정보통신산업진흥원(NIPA)·과학기술정책연구원(STEPI) 등과의 협업 연구를 진행해 글로벌IT기술대학원에서 수여하는 우수 협력연구상을 2018년에 두 차례 수상했다. 또한, 졸업논문 연구로 수행한 '단계별 맞춤형 모바일 초고속인터넷 확산 정책'에 관한 논문은 정보통신 분야의 최우수 국제학술지에 속하는 SSCI 저널인 텔레커뮤니케이션즈 폴리시(Telecommunications Policy)에 지난 8월 졸업에 앞서 게재됐다.
광대역 통신망을 갖춘 국가들의 효과적인 정보통신 정책을 분석해 개발도상국에 맞춤형 정책을 제안하는 계량적 정책 연구를 성공적으로 완수한 결과다.
이런 성과들을 바탕으로 메쿠리아 장관은 글로벌IT기술대학원의 최우수 졸업생이란 영예와 함께 지난달 13일 박사학위를 취득했다.
"내 결정이 옳았다. 기대한 것보다 더 많이 배우고 간다ˮ고 소감을 밝힌 메쿠리아 장관은 "학업은 물론 주변 사람들과의 관계 속에서 얻는 가치들로 인해 더없이 즐겁고 행복한 시간이었다ˮ라고 말했다.
지난달 18일 신성철 총장을 접견한 메쿠리아 장관은 "지난 4년간 직접 경험한 KAIST의 연구·행정·산학협력 등을 벤치마킹해 에티오피아 과학기술대학의 경쟁력 향상에 일조하고 싶다ˮ는 뜻을 전달했다. 신 총장은 "국가 발전에 기여한 KAIST의 지식과 경험이 에티오피아 과학기술원 혁신과 양국의 교류 확대를 위해 유용하게 활용될 수 있는 협력 방안을 모색하자ˮ고 화답했다.
에티오피아에 적용해보고 싶은 한국의 정책 사례로 새마을 운동, 누구나 손쉽게 인터넷에 접근할 수 있는 인프라 구축, 장년층을 대상으로 하는 IT 활용기술 교육프로그램 등을 꼽은 메쿠리아 장관은 오는 12일 본국으로 돌아간다.
그는 "어느 자리에 있든 자신의 몫을 다 하기 위해 노력하는 것은 물론 말에서 그치는 것이 아니라 행동으로 실천하고 한국인들의 모습을 인상 깊게 지켜봤다ˮ라고 전하며 "한국과 KAIST에서 배운 것들을 에티오피아에 적용하고 실천하겠다ˮ라고 밝혔다.
2020.09.08
조회수 20792
-
항암제 표적 단백질을 약물 전달체로 쓴다?
우리 대학 바이오및뇌공학과와 생명과학과 공동연구팀이 항암제의 표적 단백질을 전달체로 이용하는 역발상 연구결과를 내놨다. 항암제를 이용한 암 치료에 새로운 가능성이 열릴 전망이다.
우리 대학 생명과학과 김진주 박사·바이오및뇌공학과 이준철 박사과정 학생이 공동 제1 저자로 그리고 생명과학과 전상용·바이오및뇌공학과 최명철 교수가 공동 교신저자로 참여한 이번 연구결과는 국제학술지 ‘어드밴스드 머티리얼스(Advanced Materials, IF=27.4)’ 8월 20일 字 표지논문으로 게재됐다. (논문명: Tubulin-based Nanotubes as Delivery Platform for Microtubule-Targeting Agents)
우리 몸속 세포가 분열할 때 염색체*들은 세포 한가운데에 정렬해 두 개의 딸세포로 나눠지는데 이 염색체들을 끌어당기는 끈이 바로 `미세소관(microtubule)'이다. 미세소관은 `튜불린(tubulin)' 단백질로 이루어진 긴 튜브 형태의 나노 구조물이다.
☞ 염색체(Chromosome): DNA와 단백질이 응축하여 만드는 막대 형태의 구조체로 생명체의 모든 유전 정보를 지니고 있다.
미세소관을 표적으로 하는 항암 약물인 ‘미세소관 표적 치료제(microtubule-targeting agents)’는 임상에서 다양한 암의 치료에 활용되고 있다. 이들은 암세포 미세소관에 결합해 앞서 언급한 끈 역할을 방해함으로써, 암세포의 분열을 억제, 결국 사멸을 유도한다.
튜불린 단백질에는 이 약물이 강하게 결합하는 고유의 결합 자리(binding site)가 여럿 존재한다. 연구진은 이 점에 착안해 표적 물질인 튜불린 단백질을 약물 전달체로 사용한다는 획기적인 아이디어를 세계 최초로 구현했다. 공동연구팀은 튜불린 나노 튜브(Tubulin-based NanoTube), 약자로 TNT로 명명한 전달체를 개발하고 항암 효능을 실험으로 확인한 것이다. TNT라는 이름에는 암 치료를 위한 폭발물이라는 의미도 담고 있다.
미세소관 표적 치료제는 TNT에 자발적으로 탑재된다. 약물 입장에서는 세포 내 미세소관에 결합하는 것과 다를 바가 없기 때문이다. 이는 항암제마다 적합한 전달체를 찾아야 했던 기존의 어려움을 해소해준다. 즉 TNT는 미세소관을 표적으로 하는 모든 약물을 탑재할 수 있는 잠재력을 가진‘만능 전달체’인 셈이다.
연구진은 먼저 튜불린 단백질에 블록 혼성 중합체*인 PEG-PLL(pegylated poly-L-lysine)을 섞어 기본적인 TNT 구조를 만들었다. 여기서 튜불린은 빌딩 블록, PEG-PLL은 이들을 붙여주는 접착제이다. 그 다음, 도세탁셀(docetaxel), 라우리말라이드(laulimalide), 그리고 모노메틸아우리스타틴 E(monomethyl auristatin E) 3종의 약물이 TNT에 탑재됨을 보였다. 이 약물들은 실제 유방암, 두경부암, 위암, 방광암 등의 화학요법에 활용되고 있는 항암제들이다.
☞ 블록 혼성 중합체(Block copolymer): 두 종류 이상의 단위체로 이루어진 고분자 화합물로, 각 단위체들이 길게 반복되는 특징이 있다.
연구팀은 또 탑재되는 약물의 종류와 개수에 따라 TNT의 구조가 변할 뿐 아니라 약물 전달체로서의 물리·화학적 특성도 달라진다는 사실을 밝혀냈다. 이는 TNT가 탑재하려는 약물에 맞춰 자발적으로 형태를 변형하는‘적응형 전달체’임을 보여주고 있다.
연구팀은 특히 항암제가 탑재된 TNT가 엔도좀-리소좀 경로(endo-lysosomal pathway)로 암세포에 들어가 뛰어난 항암 및 혈관 형성 억제 효과를 보인다는 점을 세포 및 동물을 대상으로 한 실험을 통해 확인했다.
적응형 만능 약물 전달체가 성공적으로 구현이 가능했던 배경에는 연구진이 보유한 튜불린 분자 제어 기술력 때문이다. 연구진은 튜불린 단백질을 일종의 레고 블록으로 보았다. 블록의 형태를 변형하고 쌓아 올리는 방식을 제어하여, 튜브 형태의 구조체를 조립하는 노하우를 축적해왔다. 연구팀은 이번 연구에서 포항 방사광 가속기의 소각 X-선 산란 장치를 이용해 TNT 구조를 나노미터(nm, 10억 분의 1미터) 이하의 정확도로 분석했다.
공동연구팀은 "이번 연구결과는 지금까지 학계에 보고되지 않은 완전히 새로운 방식의 약물 전달체를 구현했다는 점에서 의미가 크다ˮ고 밝혔다. 연구팀은 이어 "TNT는 현재까지 개발된, 또 향후 개발예정인 미세소관 표적 치료제까지 운송할 수 있는 범용적인 전달체이며, 다양한 항암제들의 시너지 효과(synergy effect)를 기대할 수 있는 `플랫폼 전달체'가 될 것ˮ이라고 강조했다.
이번 연구는 한국연구재단 (중견연구, 리더연구, 방사선기술, 바이오의료기술개발사업) 한국원자력연구원, KUSTAR-KAIST의 지원으로 수행됐다.
2020.08.25
조회수 25253
-
제49주년 개교기념식에서 ‘2019년 올해의 KAIST인 상’ 등 총 45명 교원 시상
지난 7월 30일 열린 개교 49주년 기념식 행사에서 우리 대학은 물리학과 심흥선 교수를 '2019년 올해의 KAIST인'으로 선정해 시상했다.
'올해의 KAIST인 상'은 한 해 동안 국내·외에서 KAIST 발전을 위해 노력하고 학술 및 연구 실적이 탁월한 인물에게 수여하는 상으로 지난 2001년에 처음 제정됐다.
19번째 수상의 영예를 거머쥔 심흥선 교수는 2019년 한 해 동안 네이처(Nature)지에 물리학 난제인 콘도 스핀 구름의 존재를 세계 최초로 입증하는 연구성과를, 네이처 나노테크놀로지(Nature Nanotechnology)지에는 양자 기술의 핵심문제인 전자의 파동성 제어·관측을 위해 전자 파동의 피코초 진동 관측법을 발견하는 연구성과를 게재하는 등 KAIST의 위상을 크게 높였다는 평가를 받았다.
심흥선 교수는 "올해의 KAIST인 상을 수상하게 되어 영광이며, 이는 함께 연구하고 있는 학생들 덕분이며, 그들에게 고마움을 전한다. 자연에 대한 더 깊이 있는 이해를 얻기 위해 노력하겠다.”라고 소감을 밝혔다.
이 외에도 우리 대학은 교육, 학술, 연구, 국제협력 성과가 탁월하거나 KAIST의 위상에 크게 공헌한 총 32명의 교원에게 ‘개교기념 우수교원 포상 및 특별포상’을, 12명의 교원에게 '송암 미래 석학 우수연구상', '2019년 대표 연구성과 10선' 상 등을 수여했다.
주요 수상자는 다음과 같다.
학술대상을 수상한 기계공학과 김승우 교수는 현대 첨단 산업이 요구하는 초정밀 광학계측 기술의 선도적 개발을 주도했으며, 특히 첨단 광계측 기술 분야의 세계적 연구 결과를 창출하여 KAIST를 대표할 만한 탁월한 학술 연구업적을 낸 점을 높이 평가받았다.
창의강의대상을 수상한 전산학부 김주호 교수는 전산학에 인문학 지식을 결합한 CS+X 형태의 융합형 교과목을 개설해 사람을 위한 기술을 강조하는 등 학생 교육의 질적 향상에 크게 기여한 공로를 인정받았다.
우수강의대상을 수상한 경영공학부 윤여선 교수는 최근 5년간 강의평가 결과 상위 20위 내 진입 횟수가 10회에 이르는 등 탁월한 강의로 KAIST 학생 교육의 질적 향상 및 인재 양성에 기여한 점을 높이 평가받았다.
공적대상을 수상한 전기및전자공학부 김종환 교수는 세계 최초대회인 AI World Cup의 창시자로 2017년부터 매년 대회를 개최해 세계 각국의 연구자들에게 AI 기술력의 경쟁 무대를 제공하고, AI 기술을 대중화시키는 등 KAIST의 위상을 크게 제고한 것으로 평가받았다.
연구대상을 수상한 전기및전자공학부 심현철 교수는 최근 5년간 연구계약과 O/H 흡수실적, 지식재산권실적, Royalty 수입실적을 평가하는 연구상 부문에서 가장 높은 역량을 인정받았다.
사회봉사부문 우수교원 특별포상 대상을 수상한 전기및전자공학부 최성율 교수는 KAIST 소재·부품·장비 기술자문단 단장으로서 30여개 기업에 대한 자문을 통해 현장의 문제를 해결하는 등 국가의 위기극복과 미래혁신에 대한 성과를 인정받았다.
임형규 LINKGENESIS-Best Teacher Award 대상을 수상한 기계공학과 김성진 교수는 2012년부터 ‘연성 박막 초열전도체 개발’이라는 주제로 창의과제를 수행하는 등 창의적인 인재 양성에 크게 기여한 점을 높이 평가받았다.
이수영 교수학습혁신상 대상을 수상한 신소재공학과 홍승범 교수는 2017년부터 Flipped Learning 교과목의 설계 및 운영을 통해 창의적 수업방식을 실천하는 등의 탁월한 성과를 인정받았다.
2020.07.30
조회수 23853
-
항암 백신 및 면역치료를 최적화한 신기술 개발
우리 연구진이 새로운 항암 나노 백신을 개발하고 또 이를 이용해 면역치료를 최적화한 기술 개발을 통해 효과적인 암 예방 및 암 치료가 가능케 함으로써 암 정복에 한 걸음 더 다가서는 계기를 마련했다.
우리 대학 생명과학과 전상용 교수 연구팀이 효과적인 항암 면역치료를 위한 나노입자 백신 개발에 성공했다고 16일 밝혔다.
전 교수 연구팀은 면역 반응을 유도하는 아미노산 중합체인 종양 펩타이드 항원과 면역보조제의 동시전달이 가능한 나노입자 기반 항암 백신을 개발했다. 전 교수 연구팀은 또 세포성 면역을 담당하는 림프구의 일종인 T 세포(면역 세포) 기반 `특이적 면역(specific immunity, 선천 면역과는 다른 고도로 발전된 방어체계)' 반응을 얻는 성과를 거뒀다. 결과적으로 전 교수팀은 특히 새로 개발한 나노입자 기반 항암 백신을 기존 항암 면역 치료제로 주목받고 있는 면역 관용 억제제를 병용하여 투여 순서와 시기를 적절히 조절, 사용하면 효능은 물론 치료 효과를 크게 증대시킬 수 있음을 확인했다.
생명과학과 김유진 박사과정, 강석모 박사가 공동 제1 저자로 참여한 이번 연구는 화학 분야 국제 학술지 `앙게반테 케미(Angewandte chemie, 독일화학회지)' 5월 19일 字 온라인판에 게재됐다. (논문명 : Sequential and timely combination of cancer nanovaccine with immune checkpoint blockade effectively inhibits tumor growth and relapse)
항암 백신은 종양 항원 특이적 면역 반응을 유도할 수 있다는 장점에도 불구하고, 면역 회피가 유도돼 우리 몸에서 백신에 대한 저항성이 발생할 수 있다는 한계가 있다. 최근 항암 치료제로 주목받고 있는 면역 관용 억제제의 경우 면역 억제를 되돌려 항암 효과를 유도할 수는 있으나, 적절한 면역 반응이 존재하지 않는 경우 효과가 극히 제한적인 것으로 알려져 있다.
연구팀은 이 같은 한계를 극복하기 위해 항암 백신과 면역 관용 억제제의 병용요법 진행을 통해 병용요법의 치료 효능을 증대시킬 수 있는 전략을 활용했다. 특히 항암 백신의 효능 증가를 위해 나노입자 전달 플랫폼을 새롭게 개발했다. 결과적으로 새로 개발한 나노입자 백신이 기존 대비 항원과 T 세포 기반 특이적 면역 반응을 더욱 증가시킬 뿐만 아니라 종양 동물모델에서 효과적인 암 예방 및 치료 효과를 거두는 성과를 확인했다.
연구팀은 또 항암 나노 백신의 치료 효과를 더욱 증대시키기 위해 면역 관용 억제제인 `PD-1 항체(활성화된 T 세포의 표면에 있는 단백질)'와 병용해 진행했는데 병용 순서에 따라 치료 효능이 달라질 수 있음을 발견했다. 이 밖에 나노 백신과 PD-1 항체의 병용 치료를 순차적으로 시기를 조절하면 종양 성장과 종양 재발을 효과적으로 억제한다는 사실도 함께 입증했다.
전상용 교수는 "효과적인 항암 면역치료를 목적으로 나노입자 백신을 개발했다ˮ면서 "이와 함께 기존 항암 백신 및 면역 관용 억제제가 가지는 한계를 극복할 수 있는 새로운 병용요법 전략을 개발했는데 이를 통해 향후 다양한 항암 면역치료법에 적용해 치료 효능을 더욱 증대시킬 수 있을 것으로 기대한다ˮ고 말했다. 한편, 이번 연구는 한국연구재단의 리더연구사업 및 바이오 의료기술 개발사업의 지원을 받아 수행됐다.
2020.06.16
조회수 17550
-
실시간 영상 전송 보안 기술 개발
전산학부 김명철 교수 연구팀이 웹캠, 영상 드론, CCTV, 증강현실(AR), 가상현실(VR) 등에 사용하는 영상 전송 장비용 실시간 영상 암호화 및 전산 자원(CPU, 배터리 등) 소모 저감 기술을 개발했다.
연구팀의 실시간 영상 전송 보안기술은 비디오 코덱 종류에 상관없이 적용될 수 있는 범용성을 가질 뿐 아니라 영상전송기기의 CPU나 배터리를 최대 50%까지 절약하면서도 최고 수준의 보안성능을 제공하는 결과를 보였다.
고경민 박사 주도로 개발된 이번 연구결과는 보안 분야의 국제 학술지 IEEE TDSC(Transactions on Dependable and Secure Computing) 3월 13일 자 온라인판에 게재됐다. (논문명: Secure video transmission framework for battery-powered video devices) 또한, 국내 특허로 등록, 미국특허로 출원돼 2차 심사가 진행 중이다. (국내특허명: 통신 시스템의 암호화 패킷 전송 방법)
기존 실시간 영상 전송 보안기술은 촬영한 모든 영상을 암호화해 전송하거나 비디오 데이터 식별 없이 무작위로 암호화하기 때문에 전산 자원이 제한된 상황에서 적용하기에는 한계가 있다. 문제 해결을 위해 연구팀은 새로운 실시간 영상 암호화 및 배터리 소모 저감 기술을 개발했다. 이 기술은 영상전송 장비에서 동작하는 자원 모니터링 결과에 따라 카메라로 촬영한 영상을 구성하는 비디오 데이터를 데이터중요도 관점에서 선별적으로 암호화 전송을 수행한다.
암호화 전송 시에는 영상 송신 장비의 가용자원량에 따라 실시간으로 암호화 정도를 조정하며, 다중 전송경로 지원을 통해 보안성을 높인다. 수신된 영상 데이터는 실시간 영상 재생이 가능한 단위로 그 순서를 복원한 후 화면에 표시된다. 이 기술은 가용 전산 자원의 모니터링 결과에 따라 촬영된 영상을 구성하는 비디오 데이터 단위로 암호화가 가능해 전산 자원 가용량에 따른 선별적 적용이 가능하다.
연구팀은 카메라 장비를 상용 영상 드론에 탑재해 무선을 통한 영상전송 시 전산 자원 소모를 낮추면서 보안성을 높일 수 있음을 증명했다. 최근 코로나로 인해 널리 활용되는 비대면 강의 및 미팅의 보안성 강화에 기여할 수 있을 것으로 기대된다.
김명철 교수는 “영상전송 보안이 중요한 온라인 교육/회의, 스마트시티의 CCTV, 민군 드론 영상 송수신, 증강현실(AR), 가상현실(VR) 등에서 특허화된 개발기술이 원천기술로 활용될 수 있도록 산학협력을 활발히 추진하고 있다”라고 말했다.
2020.04.16
조회수 7772