본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%B0%94%EC%9D%B4%EC%98%A4
최신순
조회순
박희성 교수, 맞춤형 단백질 변형기술 동물 모델 적용에 성공
우리 대학 화학과 박희성 교수 연구팀이 아주대 의과대학 박찬배 교수와의 공동 연구를 통해 동물 모델에서 단백질의 아세틸화 변형을 조절할 수 있는 기술을 개발했다. 인간의 질병 연구에 대표적으로 쓰이는 쥐 모델에서 단백질 아세틸화를 조절할 수 있게 돼 다양한 질병의 원인을 밝힐 수 있을 것으로 기대된다. 이번 연구는 미래창조과학부의 글로벌프런티어사업(의약바이오컨버젼스연구단, 단장 김성훈)과 지능형 바이오시스템 설계 및 합성연구단(단장 김선창), 식약처의 미래 맞춤형 모델동물개발 연구사업단(단장 이한웅)의 지원을 받아 수행됐다. 이번 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 21일자 온라인 판에 게재됐다. 우리 몸의 세포에서 만들어지는 2만 여종의 단백질은 생합성 이후 인산화, 아세틸화, 당화 등 200여 종의 다양한 변형(post-translational modification)이 발생하게 된다. 세포 내 단백질들은 다양한 변형을 통해 기능과 활성이 조절되며 이러한 변형은 생체 내에서 세포 신호 전달 및 성장 등 우리 몸의 정상적인 신진대사 활동을 조절하는 매우 중요한 역할을 한다. 하지만 유전적 또는 환경적 요인으로 인해 단백질 변형이 비정상적으로 일어나면 세포의 신호 전달, 대사 활동 등이 손상돼 암, 치매, 당뇨를 포함한 다양한 중증 질환을 유발한다. 기존에는 이러한 비정상적 단백질 변형을 동물 모델에서 인위적으로 유발시키고 제어하는 기술이 존재하지 않아 질병의 원인 규명 및 신약 개발 연구에 어려움이 있었다. 박 교수팀은 2016년 9월 다양한 비정상 변형 단백질을 합성할 수 있는 맞춤형 단백질 변형 기술을 개발해 사이언스(Science)지에 발표한 바 있다. 연구팀은 기존 연구를 더 발전시켜 각종 암과 치매 등의 이유가 되는 퇴행성 신경질환의 원인인 비정상적인 단백질 아세틸화를 동물 모델에서 직접 구현하는 기술을 개발했다. 연구팀은 이 기술을 바탕으로 실험용 쥐의 특정한 발달 단계나 시기에 표적 단백질의 특정 위치에서 아세틸화 변형을 조절할 수 있음을 증명했다. 또한 다른 조직에 영향을 주지 않고 간이나 콩팥 등 특정 조직이나 기관에서만 표적 단백질의 아세틸화 변형 제어가 가능함을 확인했다. 연구팀은 “이 기술은 암과 치매 등 단백질의 비정상적 변형으로 발생하는 각종 질병의 바이오마커 발굴 등 질병 원인 규명 연구의 획기적인 전기를 마련할 것으로 기대된다”고 말했다. 박희성 교수는 “실용화 될 경우 지금까지 실현이 어려웠던 다양한 질병에 대한 실질적 동물 모델을 제조할 수 있을 것으로 전망된다”며 “향후 맞춤형 표적 항암제 및 뇌신경 치료제 개발 등 글로벌 신약 연구에 새 패러다임을 열 것이다”고 말했다. □ 그림 설명 그림1. 아세틸화 변형 조절 마우스 개발 및 아세틸화 제어 결과 그림2. 비정상적인 단백질 변형 및 각종 질병의 모식도
2017.03.06
조회수 10489
양분순빌딩 준공
<정문술빌딩(좌)과 양분순빌딩> 우리 대학은 바이오및뇌공학과 ‘양분순빌딩’을 신축하고 8일(수) 오후 3시에 준공식을 가졌다. 지난 2015년 5월에 착공, 1년 6개월간의 공사기간을 거쳐 완공된 양분순빌딩은 지하 1층, 지상 5층의 연면적 6,127㎡(약 1,853평) 규모로 바이오및뇌공학 실험실, 동물실험실, 연구실, 강의실 등으로 사용된다. 이 건물은 미래산업 정문술 전 회장이 지난 2014년 미래전략대학원 설립과 뇌 인지과학 인력양성을 위해 기부한 215억원 중 100억원과 교비 10억원 등 총 110억원으로 지어졌다. 정문술 전 회장은 2001년에도 IT+BT 융합기술 개발을 위해 KAIST에 300억원을 기부하였고, 이 중 110억원으로 지상 11층 규모의 ‘정문술빌딩’을 건립한 바 있다. 이번에 새로 지어진 건물은 기존의 ‘정문술빌딩’ 옆에 나란히 지어졌으며 학교에서는 기부자에 대한 감사의 뜻을 담아 정 전 회장의 부인이름을 딴 ‘양분순빌딩’으로 명명했다. 정 전 회장은 본인의 기부금으로 지어진 양분순빌딩의 준공식에 참석하지 않겠다는 의사를 전해왔다.‘연구에 방해가 된다’는 것이 그 이유다. 그는 지난 2003년 정문술빌딩 준공식에도 같은 이유로 참석하지 않았다. 강성모 총장은 “건설기금을 쾌척해주신 정문술 전 회장님의 고귀한 뜻에 깊은 존경과 감사의 마음을 전한다”며, “우리 대한민국 사회에 기업인의 사회적 책무와 진정한 기부문화가 무엇인지를 몸소 보여주고 계신다”고 말했다. 준공식에는 KAIST 강성모 총장을 비롯한 주요 보직자, 바이오및뇌공학과 교수와 학생, 그리고 시공자인 금성백조주택 대표이사, 설계자인 아키플랜 대표이사 등이 참석했다.
2017.02.09
조회수 7568
국내대학 유일 세계경제포럼 공식 초청
<강성모 총장(왼쪽)과 이상엽 특훈교수> 우리 대학 강성모 총장과 이상엽 특훈교수가 17일부터 4일 동안 스위스 다보스에서 열리는 제47회 세계경제포럼(World Economic Forum, 일명 다보스포럼) 연차총회에 공식 초청받아 참석한다. 강성모 KAIST 총장은 국내 대학 중 유일한 ‘글로벌 대학리더 포럼(Global University Leaders Forum, GULF)’ 멤버로 참석하며, ‘글로벌 사이언스 아웃룩Global Science Outlook)’ 세션에서는 미국 국립과학재단(NSF) 총재, 유럽원자핵공동연구소(CERN) 소장 등과 함께 전 세계 과학 의제에서 가장 중요한 쟁점들은 무엇이며 어떻게 대처할 것인지에 대해 논의할 예정이다. 세계경제포럼의 글로벌미래위원회(Global Future Council) 생명공학분야 의장인 생명화학공학과 이상엽 특훈교수는 전 세계 리더들을 대상으로 ‘세계를 바꾸는 기술 : 생명공학과 뇌공학기술(World Changing Technology: Biotech and Neurotech)’ 세션에서 강연한다. 현지 시간 20일 오전에 있을 이 세션에서는 제4차 산업혁명의 필수 핵심 기술 중 하나인 바이오테크놀로지가 어떻게 발전하고 있는지, 미래를 위해 무엇을 어떻게 준비해야 하는지를 조명하게 된다. 또한, 글로벌미래위원회(Global Future Council) 제4차 산업혁명분야 위원이기도 한 이 교수는 제4차 산업혁명 관련 세션에도 참석할 예정이다. 강 총장은 “올해 다보스 포럼에서는 국가와 지역을 넘어선 협력 속에서 지속가능한 성장, 사회적 통합 및 인재개발 등 인류가 직면한 주요 사안들을 책임감 있는 자세로 해결하는데 필요한 소통과 책임의 리더십에 대해 집중적으로 논의할 것” 이라며 “KAIST는 매년 다보스 포럼에 초청되어 과학기술을 선도해온 우리의 지식과 경험을 글로벌 리더와 공유하는 기회를 가져왔으며 이번에도 좋은 성과를 거둘 것으로 기대한다” 고 밝혔다. 한편, 다보스포럼은 클라우스 슈밥 회장이 1971년 창립한 행사로 세계 각국의 정상, 장관, 국제기구 수장, 재계 및 금융계 최고 경영자들이 모여 정보를 교환하고 세계 경제 발전방안 등에 대해 논의한다. 47회째를 맞는 올해는 중국 시진핑 국가주석이 기조연설을 하며 전 세계 100개국 3,000여 명의 글로벌 리더가 참석할 예정이다. <2016 다보스 포럼 Ideas Lab>
2017.01.18
조회수 10733
자랑스런 동문상에 정칠희 삼성전자 종합기술원 사장 등 6인 선정
우리 대학 총동문회(회장 고정식)는 2016년 ‘KAIST 자랑스런 동문상’ 에 정칠희 삼성전자 종합기술원 사장, 백원필 한국원자력연구원 연구개발부원장, 박한오 ㈜바이오니아 대표이사, 정현호 ㈜메디톡스 대표이사, 김후식 ㈜뷰웍스 대표이사, 김철환 (주)오렌지파워 대표이사 등 6명을 선정했다. 시상식은 지난 14일(토) 오후 서울 소공동 롯데호텔에서 열리는 2017년 KAIST 총동문회 신년교례회에서 열렸다. ‘KAIST 자랑스런 동문상’ 은 한 해 동안 국가와 사회발전에 공헌하고 모교의 명예를 빛낸 동문에게 주는 상으로 KAIST 총동문회가 1992년부터 시상해 왔다. 정칠희(물리학과 석사 79학번) 삼성전자 종합기술원 사장은 삼성전자 반도체연구소장 재직시 세계적 수준의 시스템 반도체 기술 개발 및 메모리 디바이스 기술개발을 주도했다. 정 사장은 최고 수준의 효율과 색 순도를 갖는 카드뮴 없는 친환경 퀀텀닷(Quantum Dot) 소재를 개발하여 세계 최초 퀀텀닷 TV를 양산하는 등 미래 기술을 대비한 첨단 재료 및 디바이스 개발에 주력하고 있다. 백원필(원자력및양자공학과 석사 82학번, 박사 87학번) 한국원자력연구원 연구개발부원장은 2001년부터 한국원자력연구원에 재직하면서 국내 원자력안전기술을 세계최고 수준으로 발전시켜 국내 원자력안전연구 그룹이 세계적인 리더 그룹으로 진입하는데 결정정인 기여를 했다. 특히 세계적 원전 안전검증시설인‘아틀라스(ATLAS)’를 개발·구축 운영하여 원전 안전기술 확보 및 아랍에미리트연합(UAE) 원전 수출 등에 크게 기여했다. 박한오(화학과 석사 84학번, 박사 87학번) ㈜바이오니아 대표이사는 국내 바이오벤처 1호 기업을 창업하여 20여년에 걸쳐 유전자 연구용 시약과 진단 키트 및 첨단장비 수백 종을 개발함으로써 우리나라의 유전자기술이 세계정상수준이 될 수 있는 핵심 인프라를 구축했다. 기존 신약 개발의 문제점을 극복한 혁신적인 “새미알엔에이(SAMiRNA™, Self-Assembled-Micelle-inhibitory–RNA)” 기술 개발로 난치병 치료에 대한 새로운 해결책을 제시하며 글로벌 제약사 및 연구그룹들과 공동연구를 통한 각종 난치병 신약후보물질 공동개발 및 라이선싱을 성공적으로 이끌었다. 정현호(생명과학과 석사 86학번, 박사 88학번) ㈜메디톡스 대표이사는 2000년 바이오제약기업 ㈜메디톡스를 설립하여 미생물 보툴리눔 독소제제에 대한 연구개발로 국내 최초이자 세계에서 4번째로 상용화에 성공했다. 세계 최초로 비동물성 액상형 보툴리눔 독소제제를 개발하여 다양한 신경질환을 치료할 수 있는 보툴리눔 제제를 국산화하였으며, 수입 대체효과 및 국민보건의료 향상에 기여하고 있다. 김후식(물리학과 석사 95학번) ㈜뷰웍스 대표이사는 필름을 사용하여 엑스레이 영상을 촬영하던 기존의 아날로그 방식으로부터 디지털 전자파일 형태로 엑스선 영상을 제공하는 디지털 엑스레이의 상용화에 크게 기여했다. 특히 디지털 엑스선 영상의 품질을 좌우하는 광학계 및 영상시스템 설계를 주도하고 관련 기술기반을 직접 확립함으로써 인류 건강증진 및 국가산업발전에 기여하고 있다. 김철환(생명화학공학과 학사 87학번, 석사 91학번, 박사 93학번) ㈜오렌지파워 대표이사/(재)카이트 창업가 재단 이사장은 2005년 ㈜바이오제닉스 및 ㈜이미지앤머터리얼스를 창업했다. 회사 매각 자금 중 100억 원을 창업가 육성을 위해 카이트 창업가 재단을 설립하여 후배 창업가를 지원·육성하는 엔젤투자활동을 지속하고 있다. 또한 이차전지 열 문제 해결을 위한 ㈜오렌지파워를 2012년 창업하여 캐나다 하이드로 퀘백, 영국 넥시온, 독일 폭스바겐, 미국 테슬라와 같은 글로벌 기업들과의 협력관계를 구축하는 등 국가산업발전에 기여하고 있다.
2017.01.16
조회수 9638
김호민 교수, 패혈증 원인 물질의 생체 내 메커니즘 최초 발견
우리 대학 의과학대학원 김호민 교수와 연세대학교 윤태영 교수 공동 연구팀이 우리 몸이 패혈증의 원인 물질인 박테리아 내독소를 어떻게 받아들이고 전달하는지 규명했다. 이를 통해 박테리아 내독소가 생체 내 단백질로 전달되는 분자 원리를 밝혀냄으로써 내독소가 전달되는 길목을 차단해 패혈증을 치료할 수 있는 새로운 가능성이 제시됐다. 패혈증은 감염에 의해서 과도하게 활성화된 면역반응에 따른 전신성 염증반응 증후군이다. 이 연구는 면역학 분야 국제 학술지이며, 셀(Cell) 자매지인‘이뮤니티 (Immunity)’12월 13일자에 게재되었다. 그람 음성균 세포외막에 존재하는 내독소는 생체 내 단백질을 통해 면역세포 표면의 세포수용체로 전달돼 선천성 면역 반응을 활성화시킨다. 감염에 의한 혈액 내 내독소 다량 유입은 고열, 혈압저하, 장기손상 등 과도한 염증반응의 결과인 패혈증으로 이어질 수 있지만, 내독소 인식 및 전달 관련 구체적인 분자 원리가 밝혀져 있지 않아 패혈증 치료제 개발에 한계가 있었다. 연구팀은 문제 해결을 위해 단분자 형광기법과 바이오 투과전자현미경을 활용했다. 마이셀(Micelle) 형태로 존재하는 내독소 표면에 막대 모양의 LBP가 결합하여 내독소를 인식하고, 여기에 CD14가 빠르게 결합해 내독소 한 분자를 가져간 후 면역세포 수용체인 TLR4-MD2와의 상호결합을 통해 건네주는 내독소 인식 및 전달 원리를 확인했다. 박테리아 내독소와 정제된 LBP 단백질을 혼합해 바이오투과전자현미경으로 사진을 찍은 후 각각의 분자의 모양을 컴퓨터를 활용한 이미지 프로세싱을 통해 분석함으로써 내독소와 결합한 LBP 단백질 구조를 최초로 규명했다. 특히 막대모양의 LBP 단백질이 그들의 N-도메인 끝을 통해 내독소 마이셀 표면에 결합함으로써 박테리아 내독소만을 특이적으로 인식하는 것을 발견했다. 연구팀은 박테리아 내독소에 형광을 부착시킨 후 내독소 항체를 활용해 유리슬라이드 표면에 코팅시키고, LBP, CD14, TLR4-MD2 단백질들을 흘려주면서 박테리아 내독소, LBP, CD14, TLR4-MD2 분자 하나하나의 동적인 움직임을 실시간으로 관찰하는 단분자 형광 시스템을 최초로 구축했다. 이를 통해 박테리아 내독소 표면에 결합한 LBP 단백질로부터 CD14 단백질이 내독소 한 분자만을 반복적으로 가져간 후 빠르게 TLR4-MD2로 전달함으로써 선천성 면역의 세포신호전달을 활성화 시키는 분자메커니즘을 최초로 규명했다. 또한 마우스 면역세포인 수지상세포를 활용하여 첨단 생물물리학적인 기법을 통해 제시한 분자메커니즘이 생체 내에서 내독소를 인식하여 면역반응을 유발하는 핵심 메커니즘을 검증했다. 기존의 실험방법으로 접근이 어려웠던 LBP, CD14, TLR4-MD2 단백질들 간의 동적인 상호작용을 최신 첨단 실험기법을 통하여 분자수준에서 규명함으로써 생체 내 내독소 인식 및 전달메커니즘을 규명했다. 연구 방법 및 결과는 박테리아 감염에 의한 선천성 면역 연구에 새로운 방향을 제시할 것이며 특히 이 연구에서 규명한 분자적, 구조적 지식들은 패혈증 발병메커니즘 연구 및 치료제 개발에 적극 활용될 수 있을 것으로 기대된다. 김호민 교수는“박테리아 내독소가 생체 내 단백질들의 동적인 상호작용에 의해 면역세포로 전달되는 일련의 과정들을 분자수준에서 최초로 밝힌 것이다”며 “박테리아 내독소 인식 및 전달메커니즘 이해를 통하여 선천성 면역 유발 메커니즘 이해뿐만 아니라 패혈증 예방 및 치료제 개발에 기여할 것으로 기대된다”라고 말했다. 이번 연구는 미래창조과학부, 한국연구재단 기초연구사업(개인연구, 집단연구), IBS 나노의학연구단의 지원으로 수행됐다. □ 그림 설명 그림1. 생체 내 박테리아 내독소 전달 메커니즘
2016.12.27
조회수 11543
전상용, 임성갑 교수, 신경세포의 안정적 배양 가능한 플랫폼 개발
우리 대학 생명과학과 전상용 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 신경세포를 장기적, 안정적으로 배양할 수 있는 아세틸콜린 유사 고분자 박막 소재를 개발했다. 특히 이 연구는 KAIST의 ‘학부생 연구 참여 프로그램(URP : Undergraduate research program)’을 통해 유승윤 학부생이 참여해 더욱 큰 의미를 갖는다. 유승윤 학부생을 포함해 백지응 박사과정, 최민석 박사가 공동 1저자로 참여한 이번 연구 성과는 나노분야 학술지 ‘에이시에스 나노(ACS Nano)’ 10월 28일자 온라인 판에 게재됐다. 신경세포는 알츠하이머, 파킨슨병, 헌팅턴병 등의 신경퇴행성 질환 및 신경 기반 바이오센서 등 전반적인 신경관련 응용연구에 꼭 필요한 요소이다. 대부분의 신경 질환이 노인성, 퇴행성이기 때문에 신경세포가 오래됐을 때 어떤 현상이 발생하는지 관찰할 수 있어야 한다. 하지만 신경세포는 장기 배양이 어려워 퇴행 상태가 되기 전에 세포가 죽게 돼 관찰이 어려웠다. 기존에는 특정 수용성 고분자(PLL)를 배양접시 위에 코팅하는 방법을 통해 신경세포를 배양했다. 그러나 이 방법은 장기적, 안정적인 세포 배양이 불가능하기 때문에 신경세포를 안정적으로 장기 배양할 수 있는 새로운 플랫폼이 필요하다. 연구팀은 문제 해결을 위해 ‘개시제를 이용한 화학 기상 증착법(iCVD : initiated chemical vapor deposition)’을 이용했다. iCVD는 기체 상태의 반응물을 이용해 고분자를 박막 형태로 합성하는 방법으로, 기존 세포 배양 기판 위에 손쉽게 얇고 안정적인 박막을 형성시킬 수 있다. 연구팀은 이러한 기체상 공정의 장점을 이용해 신경세포를 장기적으로 배양할 수 있는 기능을 가진 공중합체 고분자 박막을 합성하는 데 성공했다. 새로 합성된 이 고분자 박막은 신경전달물질로 알려진 아세틸콜린과 유사한 물질로 이뤄져 있다. 또한 신경세포가 고분자 박막에서 배양될 수 있는 최적화된 조건을 발견했고, 이 조건에서 생존에 관여하는 여러 신경관련 유전자를 확인했다. 연구팀은 생명과학과 손종우 교수 연구팀의 도움을 통해 새로 배양된 신경세포가 기존의 신경세포보다 전기생리학적 측면 및 신경전달 기능적 측면에서 안정화됨을 확인했다. 연구팀은 “신경세포를 장기적으로 배양할 수 있는 이 기술은 향후 신경세포를 이용한 바이오센서와 신경세포 칩 개발의 핵심 소재로 활용될 것이다”며 “다양한 신경 관련 질병의 원리를 이해할 수 있는 역할을 할 것으로 기대된다”고 말했다. 이번 연구는 한국보건산업진흥원과 한국연구재단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 본 연구에서 개발된 표면(pGD3) 및 폴리라이신 코팅 위에서 장시간 배양된 신경세포 그림2. 신경전달물질 유사 작용기를 도입한 표면 형성 과정
2016.11.17
조회수 12557
이상엽 특훈교수, 세계경제포럼 생명공학 미래 위원회 공동의장 선임
〈 이 상 엽 교수 〉 우리 대학 생명화학공학과 이상엽 특훈교수가 올해 세계경제포럼에서 출범 예정인 글로벌 미래 위원회(Global Future Council) 중 생명공학(biotech) 위원회의 초대 공동의장으로 선임됐다. 11월 아랍에미리트에서 첫 번째 미팅을 실시하는 글로벌 미래 위원회는 4차 산업 혁명을 대비하기 위해 정부, 학계, 산업계, 시민사회, 예술 등 다양한 분야에서 800여 명의 학자들이 참여한다. 특히 글로벌 미래 네트워크는 각 35개의 위원회가 연결돼 있고, 25개의 회원국으로 구성된다. 그 중 생명공학 글로벌 미래 위원회는 토마스 코넬리(Thomas Connelly) 미국 화학회장, 티나 파노(Tina Fano) 노보자임스 社 수석부사장, 모스타파 로나기(Mostafa Ronaghi) 일루미나 社 최고기술책임자 등 생명공학 분야 권위자들과 법학, 윤리, 정책 등 비 바이오 분야 전문가 24명으로 구성된다. 이 교수는 크리스퍼(CRISPR) 기술로 잘 알려진 MIT-하버드 브로드연구소의 펭 장(Feng Zhang) 교수와 함께 2년 간 공동 의장을 맡아 위원회를 운영하게 된다. 또한 이 교수는 세계경제포럼의 제4차 산업혁명 글로벌 미래 위원회의 위원으로도 초청받아 활동한다. 이 교수는 “제 4차 산업혁명시대를 이끌 한 축인 생명공학 분야에서 세계가 함께할 좋은 추진 안을 도출하도록 노력하겠다”고 말했다. 또한 이 교수는 대사공학 분야에서 세계적인 연구 성과를 낸 공을 인정받아 오는 15일 아시아인 최초로 제임스 베일리 상을 수상할 예정이다.
2016.11.08
조회수 7610
박오옥 교수, 페트병 대체 가능한 바이오플라스틱 개발
우리 대학 생명화학공학과 박오옥 교수 연구팀과 롯데케미칼(대표이사 허수영)이 산학협력 연구를 통해 기존의 플라스틱 페트 소재를 대체할 수 있는 식물 기반의 바이오 플라스틱을 수지를 개발했다. 이 기술은 식물 기반의 퓨란(furan)계 바이오 플라스틱을 고분자량으로 합성한 것으로 기존 페트 수지를 양산하는 생산 공정을 통해서 상업화가 가능할 것으로 기대된다. 이 연구는 국제 학술지 ‘그린 케미스트리(Green chemistry)’ 10월 7일자 뒷 표지 논문으로 게재됐다. 퓨란계 바이오플라스틱은 식물에서 추출한 원료로 만든 플라스틱이다. 식물을 소재로 하기 때문에 지구 온난화의 주범인 이산화탄소를 줄일 수 있고, 석유 기반의 플라스틱을 대체하기 때문에 자원도 절감할 수 있다. 또한 기체 차단성과 내열성이 좋아 기존 페트 소재가 사용되지 못했던 좀 더 넓은 분야에 사용 가능하다. 많은 연구자들이 퓨란계 바이오플라스틱이 가진 장점을 활용하기 위해 상용화가 가능하도록 연구 중이다. 그러나 퓨란계 바이오플라스틱은 분자 구조가 유연하지 않아 물성이 깨지기 쉽고 결정화(분자의 확산) 속도가 느려 고상중합을 통한 고분자량화에 한계가 있어 다양한 용도로 활용이 어렵다. 무엇보다도 결정화 속도가 느리다는 것은 기존의 상업 설비에서 양산을 할 수 없음을 의미한다. 문제 해결을 위해 연구팀은 먼저 퓨란계 플라스틱이 왜 깨지기 쉬운 특성을 갖는지 확인했다. 기존 페트는 화학구조상 선형구조이기 때문에 외부 충격에 유연하게 반응할 수 있고 결정화 속도가 빠른 편이다. 반면 퓨란계 플라스틱의 화학구조는 약간 꺾여있는 비선형 구조로 유연성이 떨어져 깨지기 쉽고 분자의 확산이 빠르지 않아 결정화 속도가 상대적으로 느리다. 연구팀은 문제 해결을 위해 육각환형의 고리 화합물을 공 단량체로 도입해 새로운 퓨란계 폴리에스터를 합성했다. 이 과정을 통해 유연성이 높아져 기계적 물성(연성, 내충격성)이 개선됐고 결정화 속도도 빨라졌다. 이 새로운 퓨란계 폴리에스터의 결정화 속도 개선으로 인해 고상중합공정이 가능해졌다. 고상중합공정이 중요한 이유는 수지의 변색 없이 분자량을 단시간에 고분자량으로 올릴 수 있기 때문이다. 고분자량으로 올리지 못하고 분자량이 낮으면 플라스틱의 모양을 형성하는 블로우 몰딩(Blow molding : 녹인 뒤 불어서 모양을 만드는 방식)과정에서 물질이 찢어지게 된다. 연구팀의 바이오플라스틱은 기존 고상중합공정에서 고분자량화에 성공해 상업적으로 활용할 수 있는 공정이 가능할 것으로 예상된다. 연구팀은 “이 기술은 병, 옷, 섬유, 필름 등 기존에 페트 소재가 사용되던 분야를 넘어 페트가 쓰이지 못했던 분야에도 적용 가능하다”며 “기존 페트보다 내열성과 기체 차단성이 높기 때문에 유리 용기를 일정 정도 대체할 수 있을 것이다”고 말했다. 1저자인 홍성민 연구원은 “학술적인 부분 뿐 아니라 상업적으로도 의미가 있는 기술이다”며 “탄탄한 기초연구를 바탕으로 실제로 우리 산업과 국가 경쟁력에 기여할 수 있는 기술이 될 것으로 기대한다”고 말했다. □ 그림 설명 그림1. 논문 표지 그림-퓨란계 수지를 성공적으로 합성, 고상중합을 통해서 고분자량화한 모식도 그림2. 퓨란계 폴리에스터의 파단면의 전자현미경 사진 그림3. 퓨란계 폴리에서트 화학 구조
2016.10.11
조회수 8007
최소영 학생, 국제대사공학회 우수논문상 수상
〈 최 소 영 박사과정 〉 우리 대학 생명화학공학과 최소영 박사과정 학생이 6월 25일부터 5일간 일본 아와지 유메부타이에서 열린 ‘제 11회 국제 대사공학회(International Metabolic Engineering Conference)’에서 우수 논문상을 수상했다. 최소영 학생은 의료용 플라스틱의 한 종류인 폴리락테이트-글라이콜레이트(polylactate-co-glycolate)를 생물학적 방법을 통해 생산하는 방법을 최초로 개발해 ‘학생/젊은 연구자 포스터(Student/young investigator poster award)’ 부문에서 우수상을 수상했다. 올해로 11회를 맞는 국제대사공학회에는 대사공학 분야의 우수한 연구자 400여 명이 전 세계에서 초청됐다. 이번 학회에서는 ‘대사공학을 위한 설계, 합성, 시스템 통합’을 주제로 최신 연구결과 발표 및 연구 전략에 대한 토의가 진행됐다. 폴리락테이트-글라이콜레이트는 젖산과 글라이콜산의 무작위 공중합체로 이뤄지는 대표적 의료용 합성 바이오고분자이다. 이 고분자는 생분해성, 생체적합성, 낮은 독성을 갖고, 주로 임플란트, 약물전달체, 봉합사 등의 의료용 고분자로 사용된다. 최소영 학생은 미생물의 유전자 조작을 통해 포도당과 목당을 세포 내에서 폴리락테이트-글라이콜레이트로 전환하는 대장균을 개발해 현 화학 공정을 대체하는 생합성 시스템을 구축했다. 이 연구 내용은 지난 4월 네이처 바이오테크놀로지 (Nature Biotechnology) 저널에 게재됐다. 최소영 학생은 “연구 분야의 대표 학회에서 수상하게 돼 매우 기쁘고 세계적으로 인정받는 우수 연구를 통해 한국 과학기술 발전에 기여하겠다”고 말했다.
2016.07.06
조회수 10295
박사과정 4명, 학술지에 초청 논문 게재
〈 이상엽 교수 연구팀 〉 우리 대학 생명화학공학과 네 명의 박사과정 학생들(지도 : 이상엽 특훈교수)이 시스템대사공학(Systems metabolic engineering) 전략을 주제로 초청 리뷰논문을 게재했다. 이상엽 교수의 지도 아래 최경록, 신재호, 조재성, 양동수 네 명의 학생이 주도한 이번 논문은 미생물 분야 학술지 ‘에코살 플러스(EcoSal Plus)’ 10일자 온라인 판에 게재됐다. 이번 논문은 학술 및 산업적으로 널리 연구되고 활용되는 대장균의 시스템대사공학 연구 전략을 총망라했다. 시스템대사공학은 이상엽 특훈교수가 창시한 과학기술 분야로 기존 대사공학에 시스템생물학, 합성생물학, 진화공학 등을 융합한 학문이다. 이번 리뷰 논문에서는 ▲시스템대사공학에서 활용하는 다양한 실험 기법 ▲시스템대사공학 연구 전략 ▲시스템대사공학 전략을 적용해 대량생산 및 산업화에 성공한 바이오리파이너리 사례를 다룬다. 대사공학은 미생물의 대사 흐름을 조절해 화합물을 생산할 수 있는 세포 공장 구축을 목표로 한다. 바이오매스 등 재생 가능한 탄소원을 먹이로 삼아 미생물을 배양해, 다양한 산업 및 의약 물질을 생산하는 바이오리파이너리 분야의 핵심 요소로 평가받는다. 특히 기존 대사공학에 시스템대사공학 전략을 적용하면 물질을 대량생산할 수 있는 고성능 균주를 효과적으로 구축할 수 있어 비용 절감을 기대할 수 있다. 또한 균주가 대규모 바이오리파이너리 공정에 적합하도록 지속적으로 최적화하는 과정도 포함돼 미래에는 석유화학 산업을 대체할 수 있을 것으로 기대된다. 에코살 플러스는 두 번에 걸쳐 출판된 ‘대장균과 살모넬라(Escherichia coli and Salmonella: Cellular and Molecular Biology)’ 책자를 전신으로 하는 온라인 리뷰 학술지이다. 생물학 연구에서 중요한 대장균 등의 미생물에 관련한 유전, 생화한, 대사 등 모든 분야를 다뤄 생물학 전반 연구의 주요 지침서로 알려져 있다. 이 교수는 “이번 초청 리뷰는 최경록, 신재호, 조재성, 양동수 네 명의 박사과정 학생들이 세계적 수준의 전략 제시 능력을 갖췄음을 증명한 것이다”며 “생명공학분의 바이블로 불리는 에코살 플러스에 논문을 게재한 학생들이 매우 자랑스럽다”고 말했다.
2016.03.30
조회수 8573
구글 딥마인드 CEO 하사비스 박사, 11일 KAIST서 특별강연
우리대학 바이오및뇌공학과(학과장 조광현)는 11일(금) 오후 2시 교내 정문술빌딩 드림홀에서 데미스 하사비스(Demis Hassabis) 박사를 초청해 ‘바이오및뇌공학과 석학 초청강연’을 연다. 구글 딥마인드의 공동 창업자 겸 CEO인 하사비스 박사는 이날 KAIST 학생들을 대상으로 ‘인공지능과 미래’를 주제로 강연한다. 인공지능 연구원, 신경과학자, 비디오 게임 디자이너 등 다방면에 걸쳐 경력을 쌓아온 하사비스 박사는 이번 강연에서 알파고(Alphago)를 포함해 최첨단 인공지능 연구 분야의 현황을 소개한다. 이어 인공지능이 향후 과학과 의료분야에 미칠 영향력, 현재 개발 중인 인공지능이 어떻게 인간의 마음을 더 잘 이해할 수 있도록 도와주는지 등을 언급할 예정이다. 하사비스 박사(40)는 영국에서 태어났다. 영국 캠프리지대학교 컴퓨터과학과에서 학사과정을 마친 후 유니버시티 칼리지 런던(UCL)에서 인지신경과학으로 박사학위를 받았다. 그는 2010년 영국 런던에 기반을 둔 기계학습 스타트업인 ‘딥마인드 테크놀러지’를 공동창업하고 대표이사를 역임했다. 2014년 구글에 인수된 딥마인드는 인공지능 바둑 프로그램인 알파고(Alphago)를 운영 중이다. 한편 인공지능 바둑프로그램인 알파고와 바둑기사 이세돌 9단은 서울에서 9일 부터 15일 까지 다섯 차례에 걸쳐 바둑대국을 펼칠 예정이다. 끝.
2016.03.09
조회수 9248
이상엽 교수, 미생물로부터 친환경 바이오플라스틱 생산기술 개발
〈 이 상 엽 교수 〉 우리 대학 생명화학공학과 이상엽 교수 연구팀이 세계 최초로 미생물을 이용해 대표적 의료용 고분자인 폴리락테이트-co-글라이클레이트(poly(lactate-co-glycolate), PLGA)를 생산해냈다고 밝혔다. 이번 연구는 생명공학 분야의 최고 권위지인 '네이처 바이오테크놀로지(Nature Bio-technology) 온라인 판에 8일 게재되었다. 기존 폴리락테이트-co-글라이콜레이트의 화학적 생산 공정은 여러 단계의 화학적 전환, 정제 등 복잡한 공정이 필요해 비효율적이었을 뿐만 아니라 유독성 금속 촉매가 사용되어 친환경적이지 못한 단점을 가지고 있었다. 폐목재, 볏짚 등 재생가능한 자원인 바이오매스를 기반으로 폴리락테이트-co-글라이콜레이트를 생산하는 미생물(균주)을 개발하여, 기존 화학공정 대비 친환경적이면서 단순화된 공정이 가능해졌다. 또한 이번 연구에서 개발한 폴리락테이트-co-글라이콜레이트 생산 균주를 기반으로 한 응용 기술로 다양한 목적성 고분자* 생산이 가능해져 신규 바이오플라스틱 생산에 새로운 지평을 열었다. 이번 연구 결과는 자원고갈, 기후변화 등의 문제를 안고 있는 기존 석유 의존형 화학산업을 재생가능한 자원을 통해 지속성장이 가능한 바이오 의존형 화학산업으로 바꾸기 위한 바이오 리파이너리 분야의 의미있는 성과이다. 이상엽 교수는 “이번 연구는 의료용 고분자의 대표적 물질인 폴리락테이트-co-글라이콜레이트를 만드는 미생물을 개발한 세계 최초의 연구“라며 “인공고분자를 생물학적 방법으로 생산할 수 있는 시스템을 구축했다는 점에서 큰 의미를 가진다.”고 말했다. □ 그림 설명 그림1. 대사공학적으로 개량된 대장균이 바이오매스로부터 PLGA 및 다양한 PLGA 공중합체를 생산하는 전체 개념도
2016.03.08
조회수 7966
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 18