본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%B0%94%EC%9D%B4%EC%98%A4
최신순
조회순
김준 교수, 난치성 유전질환인 섬모병증 치료제 후보 발굴
〈 김준 교수, 김용준 박사과정 〉 우리 대학 의과학대학원 김준 교수가 연세대학교 생명공학과 권호정 교수 연구팀과의 공동 연구를 통해 난치성 유전질환인 섬모병증의 치료제 후보를 개발했다. 이번 연구 결과는 섬모병증 치료제 개발을 위한 기반이 될 것으로 기대되며 유사한 난치성 유전질환에 대한 저분자 화합물 약물 개발 플랫폼으로도 활용 가능할 것으로 예상된다. 김용준 박사과정이 1저자로 참여하고 정인지, 김성수, 정유주 연구원이 공동 저자로 참여한 이번 연구는 의, 과학 분야 국제 학술지 ‘저널 오브 클리니컬 인베스티게이션(Journal of Clinical Investigation)’ 7월 23일자 온라인 판에 게재됐다.(논문명 Eupatilin rescues ciliary transition zone defects to ameliorate ciliopathy-related phenotypes) 세포 소기관인 일차섬모는 배아가 발생하는 과정에서 세포 간 신호전달에 관여하고 망막 광수용체 세포가 기능하는 역할을 하는 등 인체에 중요한 기관이다. 섬모병증은 이러한 섬모의 형성에 필수적인 유전자들의 돌연변이로 인해 발생되며 소뇌발달 및 신장 이상, 망막 퇴행 등의 증상을 보인다. 현재 섬모병증을 치료하는 약물은 개발되지 않았다. 섬모병증 뿐 아니라 기능손실 유전자 돌연변이가 원인이 되는 대부분의 희귀유전질환은 유전자 치료를 제외하고는 치료 약물의 개발이 이뤄지지 않았다. 연구팀은 문제 해결을 위해 섬모병증 원인의 하나인 CEP290 유전자 돌연변이를 유전자 편집기법으로 모사한 세포를 구축한 뒤 화합물 라이브러리 스크리닝 기법을 통해 섬모병증에서 나타나는 섬모형성 부진 현상을 극복할 수 있는 천연 저분자 화합물을 발굴했다. 발굴된 화합물은 CEP290 단백질과 복합체를 이뤄 섬모형성과 기능에 관여하는 단백질(NPHP5)에 작용하는 것으로 밝혀졌다. CEP290 단백질이 유전자 돌연변이로 인해 만들어지지 않는 경우 NPHP5 단백질도 정상적으로 작용하지 못하는데 이 화합물은 NPHP5의 기능을 정상화시켜 복합체가 담당하던 기능의 일부를 회복함을 확인했다. 또한 연구팀은 발굴한 화합물을 섬모병증 증상을 갖는 동물 모델에 주입했고 망막 퇴행 현상을 지연시키는 효과를 입증했다. 1저자인 김용준 박사과정은 “이번 연구는 기능손실 유전자 돌연변이로 인해 발생하는 유전질환도 저분자 화합물 약물로 치료가 가능함을 규명했다는 의미를 갖는다”고 말했다. 김준 교수는 “발굴된 후보약물의 효과를 동물실험을 통해 확인했기 때문에 인체에서의 효과 또한 증명하는 후속 연구를 진행할 예정이다”고 말했다. 이번 연구는 보건복지부 희귀질환연구센터지원사업, 한국연구재단 바이오의료기술개발사업, 글로벌연구실 사업의 지원으로 수행됐다. □ 그림 설명 그림1.섬모형성 이상을 회복시키는 약물 발굴 그림2. 발굴된 약물에 의해 섬모병증 모델 생쥐의 망막퇴행이 지연되는 효과 확인
2018.07.30
조회수 9992
전상용 교수, 건선,아토피 치료용 펩타이드 개발
우리 대학 생명과학과 전상용 교수 연구팀이 피부 전달을 통해 건선을 치료할 수 있는 펩타이드 치료제를 개발했다. 연구팀은 수 년 전 발견한 펩타이드를 나노입자로 제작해 피부를 통해 전달함으로써 동물 모델에서 건선을 치료하는 데 성공했다. 김진용 박사가 1저자로 참여한 이번 연구는 나노분야 국제 학술지 ‘에이시에스 나노(ACS Nano)’ 6월 27일자 온라인 판에 게재됐다.(논문명 :Nanoparticle-Assisted Transcutaneous Delivery of a Signal Transducer and Activator of Transcription 3-Inhibiting Peptide Ameliorates Psoriasis-like Skin Inflammation) 건선은 대표적인 만성 염증성 피부질환으로 전 세계 성인의 약 3%가 앓고 있는 자가 면역질환 중 하나이다. 최근 건선의 원인에 STAT3라는 단백질이 핵심 역할을 한다는 사실이 밝혀졌다. 연구팀은 수 년 전 STAT3라는 단백질의 기능을 저하시킬 수 있는 펩타이드를 최초로 발견해 항암 치료제로 개발한 바 있다. 그러나 건선 피부는 각질층이 매우 두껍기 때문에 피부를 통해 펩타이드를 투과시켜 표적 약물 치료를 하는 데에는 기술적인 한계가 존재했다. 연구팀은 이번 연구에서 길이가 서로 다른 두 개의 인지질과 STAT3 억제 펩타이드가 특정 조건에서 약 30나노미터 크기의 매우 작은 원반 모양의 나노입자를 안정적으로 형성함을 발견했다. 연구팀은 특수 지질성분으로 이뤄진 제형(劑形)을 통해 수십 나노미터 크기의 원판형 나노입자로 이뤄진 STAT3 억제용 펩타이드를 제조했다. 연구팀이 개발한 STAT3 억제 펩타이드는 건선 피부를 가진 동물 모델에 투여했을 때 뛰어난 항염증 효과를 보였고, 건선 발병의 핵심 요소인 각질세포의 과증식과 염증성 싸이토카인인 IL-17 등의 분비를 막는 역할을 했다. 연구팀은 의과학대학원 김필한 교수와의 공동 연구를 통해 펩타이드가 피부 속으로 얼마나 깊이 투과되는지 관찰했고, 이를 통해 나노입자가 각질층을 통과해 진피층 상부까지 전달됨을 확인했다. 전상용 교수는 “STAT3 억제 앱타이드가 난치성 염증성 피부질환인 건선에 대해 우수한 치료 효과를 보이는 바이오 신약 후보물질이 될 수 있음을 확인했다.”며 “효율적인 피부 전달이 가능한 시스템을 구축했다는 점에서 큰 의미가 있으며 향후 임상 적용이 될 것으로 기대한다”고 말했다. 이번 연구는 한국연구재단의 글로벌연구실사업과 바이오의료기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 앱타이드-지질 나노복합체의 건선 유발 생쥐 귀 모델에서의 치료효능 평가 그림2. 앱타이드-지질 나노복합체의 건선 유발 생쥐모델에서의 피부투과 효능 평가
2018.07.17
조회수 13097
이상엽 특훈교수, 조지 워싱턴 카버 상 수상
〈 이 상 엽 특훈교수 〉 우리 대학 생명화학공학과 이상엽 특훈교수가 제11회 ‘조지 워싱턴 카버 상’ 산업생명공학 혁신상 수상자로 선정됐다. 시상식은 오는 18일 미국 필라델피아에서 열리는 ‘2018 생명공학산업협회(Biotechnology Innovation Organization, BIO) 세계 산업바이오 공학 대회’의 기조 강연 세션에서 열릴 예정이다. 이번 대회는 세계 최대 규모의 산업 생명공학 및 파트너십 행사로 16일부터 19일까지 필라델피아의 펜실베니아 컨벤션 센터에서 개최된다. 조지 워싱턴 카버 상은 매년 산업 생명공학을 통해 바이오 기반 경제를 구축하고 친환경적, 지속 가능한 제품을 생산하는 데 큰 공헌을 한 사람에게 수여된다. 이 상은 100여 년 전 재생 가능한 농작물을 원료로 바이오 기반 제품과 에너지를 생산한 선구자 조지 워싱턴 카버의 뜻을 기리기 위해 제정됐다. 이 특훈교수는 조지 워싱턴 카버상의 11번째 수상자로, 듀폰(Dupont) 사의 CEO 엘렌 쿨만(Ellen Kullman), MIT 공대의 그레고리 스테파노폴로스(Gregory Stephanopoulos) 교수 등이 이 상을 수상한 바 있다. 이 특훈교수는 시스템대사공학이라는 분야를 개척해 비식용 바이오매스로부터 화학물질, 연료, 재료를 생산하는 환경 친화적이며 지속 가능한 미생물 공정을 개발해 국제적 성과를 내고 있다. 이러한 공을 인정받아 미국 국립과학원 외국회원과 미국 공학한림원 외국회원으로 선임되기도 했다. 양대 한림원 모두 선임된 외국 회원은 전 세계에 13명뿐이고, 국내에서는 이 특훈교수가 유일하다. BIO의 산업및환경 부문 브렌트 에릭손(Brent Erickson) 부회장은 “이상엽 교수는 지속 가능하고 환경 친화적인 여러 혁신적 제품과 공정을 개발해 바이오 기반의 경제를 발전시키고 전 세계 대중과 정책 및 의사결정자에게 산업 생명공학의 중요성을 알리는 데 앞장서 왔다. 산업 발전에 대한 이 교수의 공헌은 조지 워싱턴 카버의 정신을 잇고 있다”고 말했다. 조지 워싱턴 카버 상을 후원하는 아이오와 생명공학 협회의 조 흐들리카(Joe Hrdlicka) 대표는 “이상엽 교수는 조지 워싱턴 카버상을 수상하기에 완벽한 조건을 갖췄다. 이 교수의 575편이 넘는 논문, 82권의 저서, 636건의 특허는 산업 생명공학의 진보에 아주 중요한 기여를 해 우리 삶의 질을 향상시키고 있다”고 말했다. 이상엽 특훈교수는 “수상하게 돼 매우 영광이며 지난 수십 년 간 함께 해온 연구팀에게 영광을 돌린다”며 “UN의 지속가능 개발목표 달성을 위해 산업 생명공학이 중요해지고 있다. 지속 가능한 미래의 기반을 다지기 위해 함께 협력해야 한다”고 말했다.
2018.07.12
조회수 8732
박범순 교수, 유전체 편집의 글로벌 관측소 설립 제안
〈 박 범 순 교수 〉 우리 대학 과학기술정책대학원 박범순 교수 연구팀의 유전체 편집 관련 ‘글로벌 관측소(Global Observatory)’ 설립 제안 논문이 국제학술지 셀의 자매지인 ‘트렌드 인 바이오테크놀로지(Trends in Biotechnology)’ 6월자 온라인 판에 게재됐다. 유전자가위 기술의 발전으로 인간 생식세포의 손쉬운 편집이 가능해지고 인류의 미래에 직접적인 영향을 줄 수 있다는 점에서 새로운 국제적 협치의 장에 대한 필요성이 커지고 있다. 이에 2015년 12월 영국 왕립학회, 중국 과학한림원, 미국 과학한림원의 공둥 주관으로 열린 ‘인간유전체 편집에 대한 국제 회의’에서 유전체 편집기술의 안전성과 효능의 검증, 기술의 적절성에 대한 폭넓은 사회적 합의 확보, 관련 규제 관리 마련 등에 대해 논의한 바 있다. 그러나 여전히 폭넓은 합의가 무엇을 의미하는지, 이를 어떻게 확보할 지에 대한 합의점은 명확하지 않았다. 박 교수 논문은 이 문제를 세 가지로 정리해 제시했다. ▲ 유전체 편집기술에 대한 국제적 논의에는 지정학적 의미에서 많은 국가의 관점이 적절히 고려돼야 하고 ▲ 기술의 적용이 사회를 지탱하는 규범과 법적 권리 및 의무와 깊이 연관돼 있기 때문에 기술의 미래에 대한 질문은 기술적, 윤리적 영역으로 쉽게 구분할 수 없고 ▲ 무엇이 중요한 이슈이고, 우선적으로 무엇을 다뤄야 하는가, 합의를 어떻게 이룰 것인가에 대한 논의가 이뤄져야 한다고 말했다. 이어 글로벌 관측소의 설립 목적과 목표가 소개됐다. 이 관측소는 인간 유전체편집기술에 대해 보다 포괄적이며 ‘코스모폴리탄 윤리’에 기반한 새로운 형태의 숙의의 장으로 제안됐다. 가장 주된 기능으로는 글로벌 인류 공동체 내의 다양한 관점들을 가시화하고 이를 통해 숙의과정에서 보다 확장된 질문들이 다루어질 수 있도록 하는 것이다. 글로벌 관측소는 ▲유전체편집에 대한 글로벌 수준의 윤리적, 정책적 반응들을 수집하고 가시화하는 작업 ▲‘합의’에 대한 개념적 발전, 긴장관계들, 그리고 합의가 필요한 영역들에 대한 실질적 분석을 제공하고 ▲기존의 논의에서 무시되었던 중요한 질문들, 목소리를 높일 수 없었던 행위자들에게 초점을 맞춰 주기적인 논의가 이루어지는 포럼으로서 역할을 수행하게 될 것이라고 설명했다. 박범순 교수는 “크리스퍼(CRISPR) 유전자 가위로 대표되는 유전체편집기술이 가져올 사회적, 법적, 윤리적, 종교적, 철학적 이슈를 각국의 경험을 바탕으로 논의하고 정보를 공유하기 위한 대화의 장을 마련하자는 취지에서 글로벌 관측소 설립을 제안했다”고 말했다.
2018.07.02
조회수 8308
중장기 공동협력 방안 모색 위한 체코 사절단 방문
체코-KAIST 중장기 공동 기술개발 협력을 위한 체코 기술사절단이 지난 5월 30일 우리대학 본원을 방문했다. 4차산업혁명지능정보센터(센터장 이상엽 교수) 주관으로 열린 이번 방문 행사에는 AI, 로보틱스, 나노, 바이오텍 등 4차 산업혁명 핵심기술을 선도하는 체코 기업 및 학계 인사들로 구성된 사절단과 교내 교수들이 만나 전문가 회의와 연구실 투어 등의 시간을 가졌다. 신소재공학과 김일두 교수, 기계공학과 김성수 교수, 생명화학공학과 김현욱 교수, 4차산업혁명지능정보센터 김소영 교수 등이 참석했으며, 연구실 투어는 김수현 대외부총장, 기계공학과 김경수 교수가 공동 운영하는 MSC 연구실에서 진행됐다. 체코 기술사절단은 로봇 공학, 메카트로닉스, 에너지 및 전기이동성(e-mobility) 분야의 획기적 해결책을 연구․구현하는 로봇시스템, 군사용 차량 및 장비, 무인지상차량(UGV) 개발 및 생산 기업 대표 및 담당자, 체코투자청 R&D부서 관계자, 체코 프라하 공과대학(Technical University of Prague), 오스트라바 공과대학, 리베레츠 공과대학(Technical University of Liberec) 교수 등으로 구성됐다. 체코사절단의 오스트라바 공대(Technical University of Ostrava) 페트르 노벡 교수는 “한국의 산업용 로봇 연구 동향에 대해 알 수 있는 좋은 자리였다”고 말했다. 4차산업혁명지능정보센터 김소영 교수는 “이번 방문을 통해 KAIST와 같이 우수한 국내 대학과 원천기술, 기초연구가 강한 체코 사절단의 연구기획 노하우 공유 및 기술 협력을 통해 보다 구체적이고 미래지향적인 향후 협력방안을 논의할 수 있기를 기대한다”고 말했다.
2018.06.04
조회수 7252
이상엽 특훈교수, 대장균 이용한 나노재료 생물학적 합성법 개발
〈 최 유 진 박사과정, 이 상 엽 특훈교수 〉 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 대장균을 이용해 다양한 나노재료를 생물학적으로 합성할 수 있는 기술을 개발했다. 이번 연구를 통해 기존의 물리, 화학적 방법으로 합성되지 않는 새로운 나노재료도 생물학적으로 합성할 수 있는 가능성을 제시했다. 중앙대학교 박태정 교수 팀과 공동으로 진행하고 우리 대학 최유진 박사과정이 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘미국 국립과학원 회보(PNAS)’ 5월 22일자 온라인 판에 게재됐다. 기존의 생물학적 나노재료는 주로 고온, 고압의 조건에서 합성되고 유독한 유기용매와 값비싼 촉매를 사용하기 때문에 환경오염과 높은 에너지 소모의 문제가 있었다. 대안으로 친환경적이고 경제적인 미생물을 활용한 생물 공학적 나노재료 합성법에 대한 연구가 진행되고 있다. 그러나 현재까지 보고된 합성기술은 나노재료의 종류가 다양하지 않고 결정질과 비결정질 나노재료의 합성 원리가 규명되지 않아 다양한 결정질의 나노재료를 만드는 데 어려움이 있다. 이 교수 연구팀은 유전자 재조합 대장균을 이용해 주기율표 기반의 35개 원소로 이뤄진 60가지의 다양한 나노재료를 친환경적으로 생물학적 합성하는 기술을 개발했다. 다양한 금속 이온과 결합할 수 있는 단백질인 메탈로싸이오닌(metallothionein)과 펩타이드인 파이로킬레틴(phytochelatin)을 합성하는 파이오킬레틴 합성효소(phytochelatin synthase)를 대장균 내에서 동시에 발현해 다양한 나노재료를 합성하는 데 성공했다. 연구팀은 각 원소별 푸베 다이어그램(pourbaix diagram)을 분석해 생물학적 나노재료의 합성 과정에서 열역학적 안정성을 갖는 화학종의 상태를 파악했다. 이를 기반으로 생물학적으로 합성 가능한 물질을 예측 및 생산하는 데 성공했다. 또한 용액의 pH를 조절해 기존 생물학적 합성 조건에서 합성이 불가능하거나 비결정질 나노재료로 합성되는 물질을 합성이 가능하게 만들었다. 연구팀의 이번 연구는 화학적 방법으로 합성하기 어렵거나 아직 보고되지 않은 다양한 나노소재의 종류를 확장시켰다는 의의를 갖는다. 이상엽 특훈교수는 “기존의 물리, 화학적인 공정을 통한 나노재료 합성이 아닌 박테리아를 대사공학적으로 개량한 뒤 생물 공학적 배양을 통해 원하는 나노입자를 쉽고 효율적으로 합성 가능한 기술이다”고 말했다. 또한 “생물공학적 방법으로 합성된 60개의 나노재료들은 나노입자, 나노막대, 나노 판상형 등의 모양을 가지며 향후 에너지, 의료, 환경 분야 등 다양한 산업적 응용이 가능하다”고 말했다. 이번 연구는 과학기술정보통신부 기후변화대응사업의 ‘바이오리파이너리를 위한 시스템대사공학 연구과제’의 지원을 받아 수행됐다. □ 그림 설명 그림1. 재조합 대장균을 이용한 다양한 나노재료들의 생물학적 합성 기술의 전체 모식도 및 이미지
2018.05.23
조회수 11199
이해신 교수, 와인성분 통해 심장에 정맥주사로 약물 전달 기술 개발
〈 이 해 신 교수 〉 우리 대학 화학과 이해신 교수 연구팀이 와인의 떫은맛을 내는 성분인 탄닌산(tannic acid)을 이용해 간단한 정맥주사만으로도 약물을 심장 조직에 전달할 수 있는 기술을 개발했다. 연구팀은 탄닌산을 단백질, 펩타이드 등의 약물과 혼합시켜 입자화 하는 방법을 통해 심장조직을 표적할 수 있음을 규명했다. 연구팀의 심장 질환의 효율적 치료를 위한 표적화 약물전달 기술은 단백질 기반의 다양한 신약에 적용 가능할 것으로 기대된다. 안전성평가연구소의 예측모델 연구센터 김기석 박사 연구팀과 공동으로 수행된 이번 연구는 네이처 자매지 ‘네이처 바이오메디컬 엔지니어링(Nature Biomedical Engineering)’ 4월 30일자 온라인 판에 게재됐다. 심장은 인체 내 가장 중요한 기관으로 분당 60~100회의 박동을 하는 동안 약 5리터의 혈액을 뇌를 포함한 전신에 공급하는 역할을 한다. 심장은 심근이라는 근육을 이용해 끊임없이 박동하는 운동성이 높은 기관이다. 심장 및 관련 혈관 질병을 심혈관계-순환계 질환이라고 하는데 이는 우리나라 사망 원인 2위를 차지한다. 고혈압, 당뇨, 고지혈증, 흡연, 비만 등 현대인의 불규칙한 식습관 및 생활습관으로 인해 나타날 수 있다. 대표적으로 심장으로 가는 관상동맥이나 미세한 혈류들이 좁아져 산소 및 영양분 공급이 원활하지 못해 발생하는 심근경색이 있다. 많은 연구자들이 심혈관계 질환 극복을 위한 화학약물요법이나 치료용 단백질 등을 개발하고 있다. 그러나 여전히 직접적인 수술, 카테터 및 스텐트 삽입 등에 의존하고 있으며 일반 정맥주사로 개발된 약물을 심장에 효율적으로 전달하는 기술은 개발되지 않았다. 심장의 강한 운동성으로 인해 정맥으로 주사된 약물이 순환하는 동안 심장으로의 전달 효율이 급격하게 저하되기 때문이다. 문제 해결을 위해 연구팀은 과일 껍질, 견과류, 카카오, 와인 등에 다량으로 존재하는 탄닌산이라는 물질을 이용했다. 탄닌산은 와인의 떫은맛을 내는 폴리페놀 분자의 일종으로 혀에 존재하는 점막 단백질과 결합해 떫은맛을 낸다고 알려져 있다. 연구팀은 탄닌산과 단백질 사이의 강한 분자 간 결합력을 이용해 치료용 단백질, 유전자 전달체인 바이러스 또는 기능성 펩타이드 약물 등을 간단하게 섞어주는 방법으로 입자화에 성공했다. 그리고 이를 주사했을 때 심장을 표적화할 수 있다는 사실을 발견했다. 탄닌산을 이용한 단백질 입자화 기술의 원리는 일종의 ‘분자 수준에서의 코팅’ 기술이다. 입자화된 단백질 복합체 표면에 코팅된 탄닌산이 심장의 기능을 유지하기 위해 밀집돼 있는 엘라스틴 및 콜라겐 단백질과 부가적으로 강한 상호작용을 하며 심장 조직에 부착된 상태로 오랜 시간 머무는 심장 표적화 기술이다. 이러한 탄닌산-단백질 복합체는 단백질만을 주사했을 때와 비교하면 5일 이상 장기적으로 혈관 내에서 순환됨을 확인했다. 이 교수 연구팀은 예전부터 탄닌산을 비롯한 접착성, 코팅성을 갖는 다양한 폴리페놀 재료를 응용해 의료용 생체 재료를 개발해 왔다. 실제로 심근경색 동물 모델에 탄닌산과 섬유아세포 증식인자를 섞어서 만든 약품을 주입하고 4주가 지난 뒤 심근경색이 일어난 크기가 감소했을 뿐 아니라 좌심실 압력 및 심박출량 등이 정상에 가깝게 호전되는 것을 확인했다. 이해신 교수는 “지금까지 심장질환 관련한 많은 약물들이 개발됐음에도 불구하고 상대적으로 약물을 심장에 효율적으로 전달하는 방법은 개발되지 않았다”며 “이번 기술은 기존 약물들을 새롭게 공식화해 개량신약으로 만들 수 있는 원천기술이다”고 말했다. 이번 연구는 연구재단 중견연구자 도약연구, 보건복지부 암정복프로그램, 산업통상자원부의 바이오산업핵심기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 탄닌산으로 제조한 단백질 복합체가 심장 조직에 전달되는 모식도 그림2. 바이러스 유전자 발현 효율 및 치료기능성을 보여주는 연구결과
2018.05.16
조회수 13184
이상엽, 김현욱 교수, 약물 상호작용 예측기술 DeepDDI 개발
우리 대학 생명화학공학과 이상엽 특훈교수와 김현욱 교수 공동 연구팀이 약물-약물 및 약물-음식 간 상호작용을 정확하게 예측하기 위해 딥 러닝(deep learning)을 이용해 약물 상호작용 예측 방법론인 딥디디아이 (DeepDDI)를 개발했다. 김현욱 교수, 류재용 연구원이 공동 1저자로 참여한 이번 연구는 국제학술지 ‘미국 국립과학원 회보(PNAS)’ 4월 16일자 온라인판에 게재됐다. 기존의 약물 상호작용 예측 방법론은 약물-약물 간의 상호작용 가능성만을 예측할 뿐, 두 약물 간의 구체적인 약리작용에 대한 정보는 제공하지 못했다. 이러한 이유로 맞춤형 약물 처방, 식이요법 등 응용 연구에서 체계적인 근거를 제시하거나 가설을 세우는 데에 한계가 있었다. 연구팀은 딥 러닝(deep learning) 기술을 적용해 19만 2천 284개의 약물-약물 상호작용을 아우르는 86가지의 약물 상호작용을 92.4%의 정확도로 예측하는 시스템 딥디디아이 (DeepDDI)를 개발했다. 딥디디아이는 두 약물 A, B 간의 상호작용에 대한 예측 결과를 다음과 같이 사람이 읽을 수 있는 영문 문장으로 출력한다 : “The metabolism of Drug B can be decreased when combined with Drug A (약물 A를 약물 B와 함께 복용 시 약물 B의 약물 대사가 감소 될 수 있다)” 연구팀은 딥디디아이를 이용해 두 약물 복용 시 일어날 수 있는 유해반응의 원인, 보고된 인체 부작용을 최소화시킬 수 있는 대체 약물, 특정 약물의 약효를 떨어뜨릴 수 있는 음식 및 음식 성분, 지금껏 알려지지 않은 음식 성분의 활성 등을 예측했다. 이번 연구성과로 약물-약물 및 약물-음식 상호작용을 정확하게 예측할 수 있는 시스템을 활용하는 것이 가능해졌으며 이는 신약개발, 복합적 약의 처방, 투약시의 음식조절 등을 포함해 헬스케어, 정밀의료 산업 및 제약 산업에 중요한 역할을 할 것으로 기대된다. 이상엽 특훈교수는 “이번 연구결과는 4차 산업혁명 시대의 정밀의료를 선도할 수 있는 기반 기술을 개발한 것이다”며, “복합 투여되는 약물들의 부작용을 낮추고 환자 맞춤형 약물 처방과 식이요법 제안을 통한 효과적인 약물치료 전략을 수립할 수 있다. 특히 고령화 사회에서 건강한 삶을 유지하는데 필요한 약-음식 궁합에 대한 제안을 해 줄 수 있는 시스템으로 발전해 나갈 것이다”고 말했다. 이 연구성과는 과학기술정보통신부의 바이오리파이너리를 위한 시스템대사공학 연구사업, KAIST의 4차 산업혁명 인공지능 플래그십 이니셔티브 연구사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 딥디디아이 (DeepDDI)의 모식도 및 예측된다양한 약물-음식성분의 상호작용들의 시각화
2018.04.18
조회수 12741
김유천 교수, 부작용 낮춘 레이저 치료제 개발
〈 노 일 구 박사과정, 김 유 천 교수 〉 우리 대학 생명화학공학과 김유천 교수 연구팀이 기존 광역학 치료제(PhotoDynamic Therapy, 이하 PDT)의 단점을 보완한 근적외선 형광물질 기반의 PDT를 개발했다. 노일구 박사과정이 1저자로 참여하고 바이오및뇌공학과 박지호 교수 연구팀이 공동으로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 2018년도 3월 25일자 표지논문에 게재됐다. PDT는 약물이나 유전자가 아닌 빛을 이용하는 치료법으로 레이저를 특정부위에 쬐어 산소를 독성을 갖는 활성산소로 변화시켜 세포를 자가 사멸(apoptosis)로 유도할 수 있는 기술이다. 이 기술은 피부병 치료 등 일상에서도 많이 활용되는 치료법이다. 그러나 기존에 이용하는 PDT 조영제의 경우 낮은 효율을 가질 때 오히려 암세포의 유전변형이 발생해 치료효과 감소 등의 부작용이 나올 수 있다. 따라서 치료효과를 극대화하기 위해선 원하는 위치에 많은 물질을 전달하는 것이 중요하며 이를 위해 세포 소기관인 미토콘드리아에 치료효과를 집중시키는 연구가 진행 중이다. PDT 조영제로 인해 만들어진 활성산소는 미토콘드리아의 막을 공격해 세포 사멸을 일으킨다. 암세포의 미토콘드리아는 일반 세포와 비교했을 때 미토콘드리아 막의 전위 차이가 높아 양전하의 소수성 물질이 더 잘 투입되는 특성이 있다. 연구팀은 이러한 PDT 조영제 효과를 극대화하기 위해 미토콘드리아 타겟팅 그룹인 트리페닐포스포늄, PDT 증강제인 브롬화물, 그리고 용해도 증가를 위한 아민 그룹으로 구성된 물질을 개발했다. 연구팀은 이 기술을 종양이 이식된 실험용 쥐에 주입한 후 종양 부위에 빛을 조사해 항암효과를 유도했고 이를 분석했을 때 효과적으로 표적 치료가 이뤄지는 것을 확인했다. 이 물질은 근적외선 영역에서의 흡광 및 발광을 통한 662 나노미터(nm) 영역 레이저를 사용한다. 이를 통해 기존 가시광선 조영제가 마이크로미터 수준의 깊이를 보였다면 연구팀의 기술은 밀리미터까지 투과성을 가지며 진단 시 가시광역 조영제 보다 100배 이상 감도가 우수한 특성을 갖고 있다고 밝혔다. 연구를 주도한 노일구 박사과정은 “암세포 미토콘드리아에 오래 머물러 있어 레이저를 조사했을 때 원하는 부분에만 부작용 없이 효과적인 치료가 가능하다는 장점이 있다”며 “치료 후 독성이 없이 분해돼 기존 조영제의 단점을 극복할 수 있을 것이다”고 말했다. 김유천 교수는 “기존에 이용되는 진단 및 치료제를 한 단계 더 발전시킨 새로운 플랫폼의 개발을 통해 부작용을 최소화하고 다양한 질병을 치료하는 데 유용하게 사용될 것으로 기대한다”고 말했다. 이번 연구는 글로벌프론티어 지원사업 ABC 바이오매스 사업단 및 한국연구재단의 중견연구자지원사업, 바이오의료기술개발지원사업을 통해 수행됐다. □ 그림 설명 그림1. Advanced science 3월 25일자 3호 표지 그림2. 완성된 물질의 화학구조, 미토콘드리아 타겟팅 효과 및 레이저에 따른 ROS 생성 그래프
2018.04.17
조회수 13515
김일두 교수, 제20회 송곡과학기술상 수상
〈 김 일 두 교수 〉 우리 대학 신소재공학과 김일두 교수가 제20회 송곡과학기술상을 수상했다. 송곡과학기술상은 한국과학기술연구원(KIST)의 초대 원장인 송곡 최형섭 원장의 업적을 기려 제정됐다. 소재 분야와 정책기술 분야로 나눠 격년으로 수상자를 선정하고 있다. 김 교수는 신소재 개발 연구 분야에서의 탁월한 연구 공적과 우리나라 과학기술 발전에 크게 기여한 공로를 인정 받아 52회 한국과학기술연구원 개원기념일 행사(2월 9일)에서 수상했다. 김 교수는 전기방사 기술을 이용한 나노섬유 소재 합성을 바탕으로 유해 환경가스 및 호흡 속 바이오마커 가스를 분석해 질병을 조기 모니터링하는 센서 연구 개발에 주력하고 있다. 2017년 35편의 SCI 논문 발표를 포함 지금까지 211편 이상의 논문을 전문 학술지에 발표했고, 9천 650회 이상의 피인용 횟수와 H-인덱스 50을 기록 중이다. 특히 지적재산권 확보에도 많은 노력을 기울여 지금까지 국내 특허 등록 107건, 국내 특허 출원 38건, 해외 특허 등록 29건 및 해외 특허 출원 16건 등 총 190 건의 특허 성과를 얻고 있다. 2017년에는 산업화 기술이전 4 건의 성과도 이뤘다. 지난 2018년 1월 17일 남아프리카공화국에서 개최된 제5회 국제 전기방사 학회에서 기조강연을 했고 2년에 한 번 진행되는 국제 전기방사 학회에서 총 4차례 기조강연을 했을 정도로 나노섬유 기술을 선도하는 세계적인 연구 그룹으로 인정받고 있다. 김 교수는 2017년 12월 19일 우리 대학의 공과대학 기술혁신 대상을 수상하기도 했다. 김 교수는 “송곡과학기술상을 수행해 큰 영광이다”며 “앞으로 나노섬유 소재를 이용해 초고감도 나노센서 기술의 상용화에 앞장서고, 리튬공기전지용 나노섬유촉매, 기능성 멤브레인 등 나노섬유 응용 기술의 다변화 및 실용화 기여를 통해 우리 대학의 위상을 높이는데 기여하고 싶다”고 말했다.
2018.02.12
조회수 8860
최원호 교수, 플라즈마로 바이오필름 제거 기술 개발
〈 박 주 영 박사과정, 최 원 호 교수, 박 상 후 박사 〉 우리 대학 물리학과 최원호 교수, 서울대 조철훈 교수 공동 연구팀이 대기압 저온 플라즈마를 통해 페트병 등 식품 보관 용기 표면에 존재하는 대장균, 박테리아 등 일명 바이오필름을 손쉽게 제거할 수 있는 기술을 개발했다. 이는 플라즈마를 물에 처리해 활성화시켜 발생하는 화학반응을 이용해 바이오필름을 제거하는 방식으로 기존 기술보다 안전하고 손쉬워 다양한 용도로 사용 가능할 것으로 기대된다. 박상후 박사, 박주영 박사과정이 공동 1저자로 참여한 이번 연구는 재료분야 국제 학술지 ‘미국화학회 어플라이드 머티리얼즈&인터페이시스(ACS Applied Materials & Interfaces)’ 2017년도 12월 20일자에 게재됐다. 대기압 플라즈마는 대기 중에서 여러 형태로 플라즈마 및 2차 생성물을 방출할 수 있는 장점을 갖는다. 번개도 플라즈마의 일종인데 번개를 통해 공기 중 질소가 질소화합물이 돼 땅 속에 스며들어 토양을 비옥하게 만드는 것이 대표적인 사례이다. 이런 장점을 활용해 플라즈마는 에너지 및 환경 분야부터 생의학 분야까지 다양한 연구와 산업분야에 응용되고 있으며 플라즈마의 반응성 및 활용성을 높이기 위한 연구들이 전 세계적으로 활발히 진행 중이다. 최근에는 의료기술, 식품, 농업 등 다양한 분야에 살균을 목적으로 한 활성화, 기능화 등 측면에서 대기압 플라즈마를 적용하고 있다. 그러나 대기압 플라즈마로부터 발생하는 활성종의 종류, 밀도, 역할 등은 현재까지도 명확하게 밝혀지지 않아 기술을 적용하는 데 큰 어려움이 있었다. 연구팀은 플라즈마를 물에 처리시켜 활성수로 만들어 대장균, 살모넬라, 리스테리아 등 유해한 미생물이 겹겹이 쌓여 막을 이룬 형태를 뜻하는 바이오필름을 제거하는 방법을 개발했다. 플라즈마를 처리할 때 발생하는 활성종은 수산기(하이드록시기, OH*), 오존, 과산화수소, 아질산이온, 활성산소 등이다. 연구팀은 그 중 수산기가 다른 활성종에 비해 100 배에서 1만 배 낮은 농도임에도 불구하고 산화력이 높아 바이오필름 제거에 큰 역할을 하는 것을 확인했다. 연구팀은 그 외에 발생된 오존, 과산화수소, 아질산 이온 등에 대해서도 바이오필름을 제거할 수 있는 기능이 있음을 정량적으로 증명했고 이를 통해 살균제로서 대기압 플라즈마의 역할을 규명했다. 연구팀은 향후 후속 연구를 통해 플라즈마로 수산기를 효율적으로 생산할 수 있는 기술을 개발할 예정이다. 최 교수는 2013년 플라즈마 발생이 가능한 포장재를 특허로 등록했고 지도학생 창업기업인 플라즈맵에 기술이전을 완료했다. 이번 연구를 통해 플라즈마 살균 기술의 상용화에 힘쓰는 중이다. 최 교수는 “이번 연구결과는 플라즈마 제어 기술과 플라즈마-미생물 간 물리화학적 상호작용을 이해하는데 유용한 기반이 될 것이다”며 “의학, 농업, 식품 분야에서의 플라즈마 기술의 활용이 가속화되는 계기가 될 것으로 기대한다”고 말했다. 이번 연구는 국가핵융합연구소의 미래선도 플라즈마-농식품 융합기술 개발 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1.플라즈마 발생이 가능한 포장재 그림2.대기압 플라즈마를 이용한 바이오필름 저감 실험 개략도 그림3.대기압 플라즈마 적용 개념도 및 핵심요소 평가 결과 그림4.스타트업 기업인 플라즈맵(Plasmapp)에서 시판중인 STERPACK 제품
2018.01.23
조회수 13868
대한민국 100대 기술 이끌 주역에 우리 대학 교수 8인 선정
한국공학한림원이 지난 18일 발표한 2025년 대한민국 성장엔진이 될 미래 100대 기술과 그 주역 238명에 우리 대학 교수 8명이 선정됐다. 한국공학한림원은 가까운 미래인 2025년에 상용화가 가능하며 산업발전에 크게 기여할 기술을 중심으로 선정했고, 현재 이들 기술 개발에 있어 핵심 역할을 수행하고 있는 기술별 주역을 3명 이내로 뽑았다고 밝혔다. 미래 한국을 먹여 살릴 젊은 주역을 격려하고 더 많은 인재를 키우기 위해 젊은 연구자(엔지니어) 중심으로 선정했다고 말했다. 238명 주역들을 기관별로 분류해보면 대학이 78명으로 가장 많았고, 대기업 76명, 정부출연연구소를 포함한 공공기관 65명, 중소·중견기업 19명 순이었다. 우리 대학은 교육기관 중 서울대에 이어 2번째로 많은 주역을 배출했다. 학과별로는 생명화학공학과가 4명으로 가장 많은 인원을 차지했고 항공우주공학과, 원자력및양자공학과, 바이오및뇌공학과, 신소재공학과가 각각 1명씩 선정됐다. 분야별로는 ▲화학생명 분야에 이재우 교수(CCS 및 저장 플랜트), 김희탁 교수(수소전지 기술), 김신현 교수(멀티 타겟 질병진단용 바이오 센서 시스템), 임성갑 교수 (차세대 디스플레이 소재, 공정, 장비 기술) 교수가 선정됐다. ▲기계 분야는 최한림 교수(지능형 무인기 협업 기술), ▲재료 자원 분야는 류호진 교수(발전, 항공용 초내열 소재), 박병국 교수(차세대 메모리 반도체 기술), ▲전기전자 정보 분야는 남윤기 교수(뇌과학응용기술)가 선정됐다.
2017.12.21
조회수 15420
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 19