본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%B0%94%EC%9D%B4%EC%98%A4
최신순
조회순
염증없이 체내·외 측정 가능한 전자 신소재 개발
생체전자 의료기기는 체내에서 발생하는 신호를 읽어 생물학적 활동을 감지하거나, 조직을 자극해 질병 등을 치료하는 데 사용된다. 하지만 의료기기에 사용되는 전극 물질은 딱딱한 물성을 가지고 있어 체내에 염증반응을 일으키고 조직에 다량의 손상으로 이어질 수 있다. 따라서 조직과 같이 부드러운 성질을 가지면서도 전도성을 띠는 하이드로겔과 같은 연성 물질에 생체적합성이 높은 전도성 고분자를 체내 전극으로 사용하는 연구들이 활발하게 진행되고 있다. 우리 대학 신소재공학과 강지형 교수와 바이오및뇌공학과 박성준 교수 공동연구팀이 기존에 없었던 고전도성, 유사 조직 접착성 하이드로겔이란 신소재를 개발해 고성능 생체전자 기기를 구현했다고 4일 밝혔다. 대부분 전기 전도도가 높을수록 전도성 도메인들의 결정성이 높아지는 원리에 의해, 전도성이 높은 하이드로겔은 딱딱해지고, 부드러운 하이드로겔은 전도성이 낮을 수밖에 없다는 한계를 가진다. 이에 따라 전도성 고분자를 사용하는 하이드로겔 중, 전기 전도도가 높으면서도(10 S/cm 이상) 부드러운 물성(100 kPa 이하)을 가진 하이드로겔은 지금까지 보고된 바 없었다. 강지형 교수 연구팀은 기존에 없었던 고전도성, 유사 조직 물성 하이드로겔을 개발했다. 이 하이드로겔은 보고된 전도성 고분자 하이드로겔 중 가장 높은 전기 전도도(247 S/cm)를 띄며, 조직과 비슷한 물성(탄성율 = 60 kPa, 파괴변형률 = 410%)을 갖는다. 또한, 본 재료는 지속적인 움직임과 팽창, 수축이 있는 심장, 위와 같은 조직에서 안정적으로 기기가 작동하기 위해 필수조건인 조직에 쉽게 접착되는 장점을 가지고 있다. 공동연구팀은 원하는 생체 조직에 맞게 조정하고 그 형태에 맞추는 주형의 그물 구조에 따라 높은 질서도를 가지는 고분자 주형 네트워크를 도입했다. 따라서 주형에 맞추어 형성된 그물 네트워크는 기존 네트워크 대비 100배 이상 높은 전기 전도도를 보이며, 동시에 주형 고분자의 부드러운 특성 때문에 조직과 비슷한 물성을 지니게 된다. 변형에도 저항이 바뀌지 않아 생체전극으로서 최적의 성능을 갖는다. 또한 연구팀은 개발한 하이드로겔을 전극을 기반으로 한 높은 전기 전도도를 가진 다양한 고성능 생체전자 기기를 제작, 그 기능성을 검증했다. 높은 전기 전도도를 가진 특성으로 좌골신경 자극을 대상으로 하는 디바이스의 경우, 매우 낮은 전압(40 mV)에서 다리 근육의 움직임을 성공적으로 유도할 수 있었다. 또한 심전도 측정(ECG)을 위한 디바이스의 경우에도 매우 높은 신호 대 잡음 비(61 dB)로 신호를 측정하는 데 성공함으로써, 초고품질 생체 신호 측정을 위한 연성 기기 개발 가능성을 입증하였다. 이번 연구를 주도한 강지형 교수는 "이번 연구는 고전도성을 갖고 생체조직과 유사한 기계적 물성을 갖는 하이드로겔 개발을 위한 합성 방향을 새롭게 제시했다는 점에서 의미가 있다고 하면서, "이번에 개발된 전도성 하이드로겔은 급속도로 성장하고 있는 전자약 시장에 게임 체인저가 될 것으로 기대된다고 말했다. 우리 대학 신소재공학과 정주은 박사과정과 바이오및뇌공학과 성창훈 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션스 (Nature Communications)’에 4월 18일 게재됐다. (논문명: Highly conductive tissue-like hydrogel interface through template-directed assembly) 한편 이번 연구는 한국연구재단의 나노소재기술개발 미래기술연구실 사업을 받아 수행됐다.
2023.05.04
조회수 737
KAIST, 보스턴 기반 기관들과 손잡고 의사과학자 및 바이오 전문인력 양성한다
KAIST(총장 이광형)가 현지 시간으로 28일 오전 미국 보스턴의 랭햄호텔에서 美 매스 종합 브리검(Mass General Brigham) 의료서비스 시스템의 창립 회원이자 세계적인 연구중심 병원인 하버드대 매사추세츠 종합병원(Massachusetts General Hospital, 이하 매스종합병원) 및 바이오테크놀로지 기업 모더나(Moderna)와 MOU를 체결했다고 29일 밝혔다. 이날 체결식에는 각 기관 관계자 및 이영 중소벤처기업부 장관, 이인실 특허청장 등이 참석했다. 매스종합병원은 미국 보스턴에 있는 하버드 의대의 최초이자 최대 규모의 교육병원으로 세계에서 가장 혁신적인 병원이다. 세계 최대 병원 기반 연구 프로그램인 ‘매스 종합연구원(Mass General Research Institute)’을 운영해 매년 10억 달러가 넘는 연구예산을 집행하며, 13명 이상의 노벨의학상 수상자를 배출했다. KAIST는 지난해 9월 매스종합병원과 연구 및 학술교류 방안 모색을 위한 일반협정을 맺은 바 있으며, 이날 협정은 그에 따른 후속 조치로 체결됐다. 매스종합병원은 이 프로그램의 핵심을 담당하는 연구중심병원으로 하버드 · MIT(Massachusetts Institute of Technology)는 물론 지역 병원이 협업해 학생들이 의학과 공학 이론은 물론 풍부한 임상 연구 경험을 쌓을 수 있도록 지원한다. KAIST는 이번 MOU를 통해 미국의 의학과 공학의 융합으로 이뤄낸 혁신생태계와의 협력을 모색할 계획이다. 특히, 한국형 융합교육 프로그램을 개발해 향후 과학기술의학전문대학원 설립 시 인공지능(AI) 등 과학과 공학 분야를 한층 강화해 차별화된 교육 프로그램을 실시하는 것이 목표다. 또한, 혁신적 의사과학자를 양성하기 위해 KAIST 과학기술의학전문대학원 학생들의 매스종합병원에서의 실습·연구를 포함한 학술 및 인력 교류 프로그램을 개발하는 협력을 추진할 계획이다. 매스종합병원 원장인 데이비드 브라운(David F.M. Brown) 의학박사는 “KAIST와의 향후 협력은 의사과학자 양성, 학술 및 인력 교류, 양 기관 교수진의 공동연구 활성화 등 다양하고 폭넓은 잠재력을 가지고 있어서 이번 협정 체결을 통해 글로벌 협력에 적극적으로 일조하고 서로의 목표를 이뤄나갈 수 있을 것”이라고 밝혔다. 한편, 같은 날 KAIST와 모더나 사이의 MOU도 함께 진행됐다. KAIST 의과학대학원과 함께 의과학 전문인력을 양성하는 내용이 골자로 담겨있으며, 향후 백신 및 신약 개발 · 바이러스 연구 · mRNA 공동 연구 및 신속한 기술사업화 등 전반에 걸쳐 다각적인 협력 방안을 논의해 나갈 예정이다. 모더나는 설립 이후 10년이 넘는 기간 동안 mRNA 분야의 프로그램을 발전시키는 연구 단계의 회사에서 7가지 치료 양식에 걸쳐 백신 및 치료제의 다양한 임상 포트폴리오를 갖춘 기업으로 변모했다. 45개의 개발 후보에 걸쳐 48개의 프로그램을 가동 중이며, 이 중 38개는 현재 임상시험을 진행 중이다. 알파 게레이(Arpa Garay) 모더나 최고상업책임자(CCO)는 “대한민국에서 과학기술의 혁신을 이끄는 KAIST와 전문인력 양성을 위한 협력의 의지를 다지게 된 것에 매우 감사하다”고 말하며, “mRNA 혁신의약품 개발에 필요한 모더나의 전문성을 바탕으로 한국의 바이오헬스분야 핵심인력과의 협력과 교육에 기여할 수 있기를 바란다”고 덧붙였다. 이광형 KAIST 총장은 “세계 최고의 연구중심 병원인 하버드대 매사추세츠 종합병원(Massachusetts General Hospital)과 가장 영향력 있는 바이오 의료 기업인 모더나와 손잡고 긴밀하게 협력하게 된 것을 매우 뜻깊게 생각한다”라고 전했다. 이어 이 총장은 “두 기관과의 공조를 바탕으로 의사과학자 및 바이오 의료사업을 이끌어갈 글로벌 리더를 양성해 인류의 건강 문제를 해결하고 국가 R&D와 산업을 한층 다채롭게 하는 데 박차를 가하겠다”라고 전했다.
2023.04.29
조회수 2291
장용근 명예교수, 다인바이오(주)와 신약 개발 관련 기술이전 계약 체결
생명화학공학과 장용근 명예교수는 3월 30일 다인바이오(주)와 신약개발 관련 기술이전계약 체결식을 가졌다. 계약명은 ‘네오아가로올리고당 흡착 분리 장치 및 분리 방법’으로 네오아가로올리고당 혼합물의 일부 성분인 DP6의 간질환 방지용 의약품으로서의 상용화에 필요한 DP6의 고순도 분리 공정 기술을 주요 내용으로 한다. 이번 기술은 SMBc (Simulated Moving-Bed Chromatography)에 기반한 것으로서 주발명자인 장용근 교수가 과기기술정보통신부 차세대바이오매스연구단 단장으로 일하면서 한양대학교 문성용 교수와 공동으로 개발하였으며 연구단 종료 후 현재 KAIST에 이관된 상태다. 본 계약은 전임상으로부터 제품개발/판매까지 전 단계에 걸쳐 단계별 마일스톤 형식으로 다인바이오가 총 24억 원의 선급실시료를 지불하고 제품화 이후 판매액에 따라 소정의 경상실시료를 지불하도록 되어 있다.
2023.04.17
조회수 674
이산화탄소에서 바이오 플라스틱 20배 이상 뽑아내다
전 세계적으로 기후변화 문제가 심각해짐에 따라 이를 기후 위기로 인식하고 이에 대응하는 적극적인 관심과 노력이 요구되고 있다. 그중 이산화탄소를 활용해 재자원화하는 여러 방법 중에서 전기화학적 이산화탄소 전환 기술은 전기에너지를 이용해 이산화탄소를 유용한 화학물질로 전환할 수 있는 기술이다. 이는 설비 운용이 용이하고, 태양 전지나 풍력에 의해 생산된 재생 가능한 전기에너지를 이용할 수 있으므로 온실가스 감축 및 탄소 중립 달성에 기여하는 친환경 기술로 많은 관심을 받고 있다. 우리 대학 생명화학공학과 이현주 교수와 이상엽 특훈교수 공동연구팀이 전기화학적 이산화탄소 전환과 미생물 기반의 바이오 전환을 연계한 하이브리드 시스템을 개발해 이산화탄소로부터 높은 효율로 바이오 플라스틱을 생산하는 기술 개발에 성공했다고 30일 밝혔다. 유사한 시스템 대비 20배 이상의 세계 최고 생산성을 보여준 해당 연구 결과는 국제 학술지인 ‘미국국립과학원회보(PNAS)'에 3월 27일 字 온라인 게재됐다. ※ 논문명 : Biohybrid CO2 electrolysis for the direct synthesis of polyesters from CO2 ※ 저자 정보 : 이현주 (한국과학기술원, 교신저자), 이상엽(한국과학기술원, 교신저자), 임진규(한국과학기술원, 현 소속 기관 Stanford Linear Accelerator Center, 공동 제1저자), 최소영(한국과학기술원, 공동 제1저자), 이재원(한국과학기술원, 공동 제1저자) - 총 5명 이산화탄소의 효율적인 전환을 위해 고효율 전극 촉매 및 시스템 개발이 활발히 진행되고 있는데, 전환생성물로는 주로 탄소 1~3개의 화합물만이 제한적으로 생산되고 있다. 일산화탄소, 포름산, 에틸렌과 같은 탄소 1개의 화합물이 비교적 높은 효율로 생산되며, 이 밖에 에탄올, 아세트산, 프로판올과 같은 여러 개 탄소의 액상 화합물도 만들어질 수 있으나 이는 더 많은 전자를 필요로 하는 화학반응 특성상 전환 효율 및 생성물 선택성이 크게 낮다는 한계점이 있다. 이에 우리 대학 생명화학공학과 이현주 교수와 이상엽 특훈교수 공동연구팀은 전기화학적 이산화탄소 전환 기술과 미생물을 이용한 바이오 전환 기술을 연계해 이산화탄소로부터 바이오 플라스틱을 생산하는 기술을 개발했다. 이 전기화학-바이오 하이브리드 시스템은 전기화학 전환반응이 일어나는 전해조와 미생물 배양이 이루어지는 발효조가 연결된 형태로, 전해조에서 이산화탄소가 포름산으로 전환되면, 이 포름산을 발효조에 공급해 커프리아비더스 네케이터(Cupriavidus necator)라는 미생물이 탄소원으로 섭취해 미생물 유래 바이오 플라스틱인 폴리하이드록시알카노에이트(polyhydroxyalkanoate, PHA)를 생산한다. 기존 이러한 하이브리드 콘셉트의 연구 결과에 따르면, 전기화학 반응의 낮은 효율 및 미생물 배양 조건과의 차이 등의 문제로 생산성이 매우 낮거나 비연속적 공정에 그친다는 단점이 있었다. 이를 극복하기 위해 공동연구팀은 기체 상태의 이산화탄소를 이용한 기체 확산 전극(gas diffusion electrode)으로 포름산을 만들었다. 그리고 미생물의 생장을 저해하지 않으면서도 전기화학 반응이 충분히 잘 일어나도록 하는 전해액이자 동시에 미생물 배양 배지로 이용할 수 있는 ‘생리적 호환 가능한 양극 전해액(physiologically compatible catholyte)’을 개발하여 별도의 분리 및 정제과정 없이 바로 미생물에게 공급하도록 했다. 이를 통해 이산화탄소로부터 만들어진 포름산을 포함하고 있는 전해액이 발효조로 들어가 미생물 배양에 쓰이고, 전해조로 들어가 순환되도록 하여 전해액과 남은 포름산의 활용을 극대화했다. 또한, 이 과정에서 필터를 설치해 전극 반응에 영향을 줄 수 있는 미생물이 걸러진 전해액만이 전해조로 공급되고 미생물은 발효조 안에만 존재하도록 하는 두 시스템이 잘 연계되면서도 효율적으로 작동되도록 설계했다. 개발한 하이브리드 시스템을 통해 이산화탄소로부터 세포 건조 중량의 83%에 달하는 높은 함량의 바이오 플라스틱(PHB)를 생산했으며, 이는 4 cm2 전극에서 1.38g의 PHB를 생산한 결과로 세계 최초 그램(g) 수준의 생산이며 기존 연구 대비 20배 이상의 생산성이다. 또한 해당 하이브리드 시스템은 연속 배양(continuous culture)의 가능성을 보여줌으로써 추후 다양한 산업공정으로의 응용 또한 기대된다. 교신저자인 이현주 교수와 이상엽 특훈교수는 “이번 연구 결과는 바이오 플라스틱뿐만 아니라 다양한 화학물질 생산에 응용될 수 있는 기술로서 앞으로 탄소 중립을 위한 핵심 기술로 많은 활용이 기대된다”라고 밝혔다. 한편, 이번 연구는 과기정통부가 지원하는 이산화탄소 저감 촉매 및 에너지 소자 기술 개발 과제, 불균일계 원자 촉매 제어 과제와 석유대체 친환경 화학기술개발사업의 바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제의 지원을 받아 수행됐다.
2023.03.30
조회수 1550
공학생물학 인재 양성 본격화
국가 필수전략기술이면서 디지털바이오 분야의 핵심이라 할 수 있는 합성생물학 분야로 알려진 공학생물학(Engineering Biology)은 생명과학에 공학적 기술개념을 도입하여 인공적으로 생명체의 구성요소·시스템을 설계·제작·합성할 수 있는 미래가 주목하는 학문·기술 분야이다. 우리 대학은 `공학생물학대학원(Graduate School of Engineering Biology)'을 설립하고 공학과 생명과학의 최신 융합 분야에서 세계적인 연구 및 교육 혁신의 교두보 역할을 하겠다고 17일 밝혔다. 공학생물학은 바이오 R&D와 디지털·AI·로봇자동화 기술의 융합으로 고속·대량·저비용화를 실현하고, 기존 바이오 기술의 한계를 극복하며 환경·의약·화학·에너지 등 전방위적 산업적 활용과 막대한 시장 창출이 전망되는 분야다. 지금은 인공지능(AI) 기술이 빠른 속도로 발전하고 있어 인공지능 시대라 말할 수 있지만, 10년 후인 `포스트 인공지능 시대'에 미리 대비하기 위해 생명 시스템의 공학적 설계·합성을 연구하는 시대를 미리 준비한다는 목적이다. 미국, 영국, 중국, 일본 등 주요국들은 국가 차원에서 공학생물학(합성생물학)을 전략적 육성 분야로 지정, 핵심기술을 조기 확보하고, 글로벌 기술패권 경쟁에 선제적·전략적 대응을 위해 우수 인력 양성에 집중하고 있다. 이러한 공학생물학의 미래 가능성으로 인해 고급 인력에 대한 수요가 매우 높은 반면, 관련 학과의 부재 등으로 인력 공급이 매우 부족한 수요-공급 불균형의 문제를 해소하고 관련 산업을 활성화하고자 한다. 공학생물학 전공 졸업생은 관련 학계뿐만 아니라 바이오소재, 신약개발, 질병·감염병 진단기술, 기후환경대응기술, 디지털바이오 등 다양한 산업계로 진출하여 국내 바이오산업을 선도하는 정예 공학자로 활약이 기대된다. 이를 위해 KAIST의 생명과학기술대학과 공과대학이 한국생명공학연구원(KRIBB)와 협력하여 최적의 교수진을 구성하고 기초·응용 분야를 아우르는 세계 최고의 공학생물학 교육과정과 ‘First Mover’ 연구 프로그램을 구축하겠다는 계획이다. 현재 한국생명공학연구원은 합성생물학전문연구소를 설립(`22)하고, 세 개의 산하 연구센터(합성생물학, 세포공장, 유전자교정연구센터)를 통해 공학생물학 분야 육성을 본격화하고 있다. 우리 대학 조병관 공학생물학대학원 책임교수는 "생명과학, 화학, 화학공학, 컴퓨터공학, 로봇공학을 포괄하는 융합학문을 바탕으로 기존의 한계를 극복하는 새로운 생명시스템의 구현을 목표로 하고 있다ˮ며, "이를 통해 본 대학원은 생명과학을 새로운 시각으로 바라보고 ‘First Mover’ 연구를 추구하여 학계, 산업계, 경제계에 새로운 비전을 지속적으로 제공할 것ˮ이라고 전했다. 한편, 2023년 가을학기 공학생물학대학원의 석·박사과정 온라인 원서접수는 3월 31일부터 시작된다. 입시설명회는 3월 31일(금) 오후 4시부터 온라인으로 개최된다. 사전등록링크: https://forms.gle/4Fjc1FB19xmMFohf9). 입학 관련 자세한 사항은 홈페이지(https://admission.kaist.ac.kr/graduate/)에서 확인할 수 있다.
2023.03.17
조회수 1719
암과 치매 등 맞춤형 신약 발굴 플랫폼 개발
우리 대학 화학과 박희성 교수 연구팀이 질병을 유발하는 다양한 바이오마커들에 맞추어 재단하듯이 디자인이 가능한 고리형 펩타이드*기반 신약 발굴 플랫폼 기술을 개발했다고 21일 밝혔다. *고리형 펩타이드: 기본 선형으로 이루어진 펩타이드를 약리 효과를 높일수 있도록 고리형태의 구조로 만들어진 아미노산 중합체를 지칭함 고리형 펩타이드는 낮은 독성과 뛰어난 약리 활성으로 인해 많은 주목을 받아왔지만 자유롭게 디자인하고 제조하기가 어려워 실제 신약 개발에 활용되기 어려운 단점이 있었다. 박 교수팀은 암을 포함한 다양한 질병들에 대한 치료제 후보물질 발굴에 매우 유용하게 활용될 수 있도록 이러한 고리형 펩타이드의 맞춤형 디자인을 가능하게 하는 신약 발굴 플랫폼 기술을 개발하는데 성공하였다. 우리 몸의 세포에서 만들어지는 단백질들은 다양한 변형을 통해 기능과 활성이 조절되며 이러한 변형은 생체 내에서 세포 신호 전달 등 우리 몸의 정상적인 신진대사 활동을 조절하는 매우 중요한 역할을 한다. 하지만 유전적 또는 환경적 요인으로 인해 단백질 변형이 비정상적으로 일어나면 세포의 신호 전달, 대사 활동 등이 손상되어 암, 치매, 당뇨를 포함한 다양한 중증 질환을 유발한다. 기존에는 이러한 비정상적 단백질 변형을 제어할 수 있는 후보물질의 탐색이 용이하지 않아서 질병의 원인 규명 및 신약 개발 연구에 어려움이 있었다. 박 교수팀은 지난 2016년 다양한 비정상 변형 단백질을 합성할 수 있는 단백질 변형기술을 개발해 `사이언스(Science)' 지에 논문을 발표한 바 있다. *논문명: A chemical biology route to site-specific authenic protein modifications 연구팀은 기존 연구를 더 발전시켜 질병의 원인이 되는 비정상적인 단백질 변형을 제어할 수 있는 고리형 펩타이드를 효과적으로 디자인하고 탐색하는 스크리닝 플랫폼 기술을 개발했다. 연구팀은 이 기술을 활용해 비정상적인 단백질에 결합하여 다양한 종류의 암을 유발하는 원인으로 알려진 종양 바이오마커인 HDAC8(histone deaceytylase 8)의 활성을 저해하는 고리형 펩타이드를 효과적으로 발굴할 수 있음을 증명했다. 박희성 교수는 "이 기술이 실용화될 경우 다양한 질병에 대한 혁신신약 후보물질 탐색이 실질적으로 가능해질 것으로 전망된다ˮ며 "향후 맞춤형 표적 항암제 및 뇌 신경 치료제 개발 등 글로벌 신약 연구에 새 패러다임을 열 것이다ˮ고 말했다. 이번 연구는 과학기술정보통신부(장관 이종호)가 창의성 기초연구를 촉진하는 개인연구사업 중견연구와 미래 과학기술을 선도하는 연구자를 발굴하는 삼성미래기술육성사업재단(이사장 김성근)의 지원을 받아 수행됐다. 화학과 강덕희 박사와 김도욱 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지인 `앙게반테 케미(Angewandte Chemie International Edition)' 2023년 1월 16일 자 온라인판으로 게재됐다. *논문명: A Versatile Strategy for Screening Cutson-Designed Warhead-Armed Cyclic Peptide Inhibitors
2023.02.21
조회수 1228
7개 연구실, '안전관리 우수연구실' 인증 취득
우리 대학 7개 연구실이 과학기술정보통신부가 주관하는 2022 안전관리 우수연구실 인증을 획득했다. 안전관리 우수연구실 인증제는 대학이나 연구기관 등에 설치된 과학기술 분야 연구실이 자율적으로 안전관리 역량을 강화할 수 있도록 정부가 2013년 도입한 제도다. 안전관리 표준모델을 발굴하고 확산하는 것을 목표로 안전관리 수준과 활동이 우수한 연구실에 전문가의 심사를 통한 인증을 부여하고 있다. 이번에 신규 인증을 획득한 연구실은 총 7개로 대전 소재 정부출연연구기관 중 최다 규모다. 생명과학과 ①시스템 및 합성생물학 연구실(조병관 교수), 신소재공학과 ②NanoSF 연구실(강정구 교수), ③바이오신소재연구실(박찬범 교수), ④지속가능에너지재료 연구실(정우철 교수), ⑤신소재 영상화 및 융합 연구실(홍승범 교수), 원자력및양자공학과 ⑥핵융합 및 플라즈마 동역학 연구실(성충기 교수), 화학과 ⑦나노촉매연구실(송현준 교수) 등이다. 해당 연구실들은 ▴연구실 안전 환경 시스템 분야(30점) ▴연구실 안전 환경 활동 수준 분야(50점), ▴연구실 안전관리 관계자 안전의식 분야(20점) 등 세 가지로 구분된 심사 항목에서 각 분야 배점의 80% 이상을 득점하고 80점 이상의 총점을 얻었다. 또한, 안전관리 우수연구실 인증제 운영에 관한 규정에 명시된 필수 이행항목 4종에 대한 평가를 동시에 충족해 우수 연구실로 인증됐다. 이광형 총장은 "최근 중대재해 처벌 등에 관한 법률이 시행되어 공공기관의 사회적 책임에 부응하기 위해 안전보건경영시스템 'ISO45001' 인증을 준비하는 등 연구실 안전관리에 많은 관심을 가지고 있다"라고 전했다. 이어 이 총장은, "KAIST의 우수한 연구자들이 안전하게 연구할 수 있도록 안전관리 우수연구실 인증을 향후 확대하여 시행하는 등 안전관리에 만전을 기하겠다"고 강조했다. 26일 오후 2시부터 진행된 인증서 수여식에는 이승섭 교학부총장, 방진섭 행정처장 등 보직자들과 해당 연구실 관계자들이 참여했다. 또한, 연구실 내 행정적 관리를 평가하는 "안전 환경 시스템 분야"와 구성원의 안전의식을 평가하는 "안전관리 관계자 안전의식 분야"에서 높은 점수를 받은 강정구 신소재공학과 교수 연구실 투어가 진행됐다.
2023.01.30
조회수 1830
바이오경제를 이끌어가는 대사공학 30년 역사와 미래
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 지난 30년간 대사공학이 발전해온 역사를 정리해, 대사공학이 어떻게 지속 가능한 발전에 기여할 수 있는 분석한 결과를 정리하여 ‘지속 가능성과 건강을 위한 대사공학’ 논문으로 발표했다고 25일 밝혔다. 이번 논문은 셀(Cell) 誌가 발행하는 생명공학 분야 권위 리뷰 저널인 `생명공학 동향(Trends in Biotechnology)'의 40주년 특집호 온라인판에 게재됐다. ※ 논문명 : Metabolic engineering for sustainability and health ※ 저자 정보 : 김기배(한국과학기술원, 공동 제1 저자), 최소영(한국과학기술원, 공동 제1 저자), 조인진(한국과학기술원, 공동 제1 저자), 안다희(한국과학기술원), 이상엽(한국과학기술원, 교신저자) 포함 총 5명 대사공학은 1990년대 초반부터 본격적으로 연구되어 지난 30년간 괄목할 만한 발전을 이뤘다. 대사공학은 산업, 의료, 농업 및 환경 분야를 포함한 대부분의 생명공학 분야에서 적용돼왔으며, 특히 미생물 공학에 중점을 두고 연구가 진행됐다. 다양한 발효 식품과 알코올음료 생산 등, 미생물을 사용한 물질 생산은 오랜 역사가 있다. 미생물은 동식물에 비해 빠르게 자랄 수 있어 실험에 드는 시간과 비용이 적게 든다. 또한 유전자 변형 생물(Genetically Modified Organism; GMO) 관련한 윤리 및 안정성 문제에서 동식물과 비교해 미생물의 유전공학은 상대적으로 자유로워 미생물에 관한 대사공학 연구가 광범위하게 시행돼왔다. 지난 수십 년간 대사공학은 유용한 화학물질을 효율적으로 생산하고, 분해가 어려운 오염 물질을 분해할 수 있는 미생물 균주를 성공적으로 개발하는 등, 지속 가능한 발전을 위한 핵심적인 기술로서의 면모를 보여왔다. 특히, 현재까지 대사공학을 통해 개발한 미생물은 재생 가능한 바이오매스로부터 바이오 연료, 바이오 플라스틱, 산업용 대량 화학물질, 화장품 성분 및 의약품까지 수백 가지의 화학물질이 생산을 가능케 했다. 또한, 대사공학은 미생물과 곤충을 포함한 동식물의 자연적 정화 과정에서 영감을 얻어 미생물 기반의 다양한 생물학적 정화 방법을 개발하기 위해 사용돼왔다. 오염 물질과 독성 화학물질의 분해 경로를 조작함으로써 유출된 기름, 폐플라스틱, 살충제, 폐기된 항생제와 같은 물질을 더 높은 효율로 분해할 수 있도록 미생물을 개량할 수 있고, 이는 환경 보존을 위한 연구의 초석으로서 대사공학이 인류 건강에 기여하는 중요 예시다. 이처럼 대사공학은 유엔이 발표한 지속가능발전목표(Sustainable Development Goals; SDG) 달성에 다방면으로 기여하고 있다. 연구팀은 이번 연구에서 지난 30년간 대사 공학이 발전하며 어떻게 바이오 기반 화학물질의 지속 가능한 생산, 인류 건강 및 환경 문제까지 기여했는지에 대한 광범위한 개요를 제공했다. 특히 이상엽 특훈교수는 대사공학의 태동기부터 연구를 수행해 왔으며 2000년대 들어서 두드러진 합성생물학의 발전과도 함께해 왔다. 연구팀은 이번 논문을 통해 대사공학의 출현부터 인공지능을 활용한 최신 기술의 도입까지, 지난 수십 년 동안 어떻게 사회적, 산업적, 기술적 요구를 해결하기 위해 어떻게 발전해왔는지 정리하고, 최근 대사공학 연구가 어떻게 산업용 대량 화학물질 생산, 바이오 연료 생산, 천연물 생산, 생물학적 정화 분야에 기여하고 있는지 논의했다. 나아가 건강 및 환경 문제의 해결과 지속 가능한 바이오 기반의 화학산업을 정착시키기 위해 극복해야 할 대사공학의 문제점을 함께 제시했다. 공동 제1 저자인 생명화학공학과 김기배 박사과정생은 “기존의 석유화학 공정 기반의 화학물질 생산으로 인한 기후 위기와 화석 연료 고갈 문제를 고려했을 때 대사공학을 이용한 화학물질의 지속 가능한 생산 연구는 더욱 중요해지고 있다”라고 말했으며, 이상엽 특훈교수는 “이번 연구에서 대사공학의 역사를 돌이켜봄으로써 대사공학의 지속가능발전목표를 달성하기 위한 기여를 조명했으며, 우리 사회가 직면한 기후 위기, 환경 오염, 헬스케어, 식량 및 에너지 부족 문제에 대한 해결책으로서 대사공학이 점점 더 중요한 역할을 할 것”이라고 밝혔다. 한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제, 바이오·의료기술개발사업의 맞춤형 세포공장 기반 유해선충제어 바이오소재 기술 개발 과제, 그리고 산업통상자원부가 지원하는 e바이오리파이너리 직접공기포집 C1전환 합성생물학의 통합 과제의 지원을 받아 수행됐다.
2023.01.25
조회수 1319
KAIST-전주시-전북대, '2022 세계 바이오 혁신 포럼' 개최
우리 대학이 지난 6일부터 3일간 2022 세계 바이오 혁신 포럼(World Bio Innovation Forum, 이하 WBIF)을 개최했다. WBIF는 우리 대학 대외협력 자문역을 맡고 있는 채수찬 교수가 대표로 있는 비영리단체로 KAIST 바이오혁신경영전문대학원과 전주시, 전북대학교 지역혁신센터와 함께 세 번째 글로벌 포럼을 진행했다. 디지털 치료제와 세계 바이오 헬스 핫이슈인 줄기세포 치료제 및 오가노이드는 물론 비교적 미개척 분야인 반려동물용 의약품 및 의료기기를 주제로 선정해 기존에 개최되어온 바이오헬스 포럼과의 차별점을 확보했다. 포럼 첫날에는 줄기세포 치료와 장기유사체(Organoids)를 주제로 하버드 의대 김광수 교수와 김진 연구원, 최동호 한양대 의대 교수, 샤힌 라피(Shahin Rafii) 웨일 코넬 대학 교수가 발표했다. 기업에서는 오가노이드사이언스(ONGANOIDSCIENCES)의 이경진 CTO가 장기유사체(Organoids) 활용 방안 등에 대해 심도 있는 정보를 제공했다. 김광수 교수는 현재 하버드 의대 맥린병원 분자신경생물학실험실 소장으로 재직중으로 지난 2020년에 맞춤형 줄기세포로 파킨슨병 임상 치료를 세계 최초로 성공한 전문가다. 포럼 둘째 날에는 반려동물 의약품을 주제로 전북대 수의대 박철 교수가 좌장을 맡았다. 스탠퍼드에서 생명공학 박사학위를 받고 반려견 맞춤형 암 치료제 개발기업 임프리메드(ImpriMed)를 창업한 임성원 대표가 참여해 바이오테크와 인공지능을 결합한 최적의 맞춤형 암 치료제 개발 사례를, 스탠드업 테라퓨티스(Stand Up Therapeutics)의 유준상 대표가 척추 손상 유전자 치료제에 대해 발표했다. 마지막 날에 는디지털 치료제와 디지털 헬스케어 기기를 주제로 KAIST 엄지용 교수와 전북대 안상민 교수가 좌장을 맡아 전 세계 바이오 헬스의 가장 큰 이슈중 하나인 디지털 치료제의 현재와 미래를 집중적으로 논의했다. 이를 위해, 사노피(Sanofi), 블루시그넘(BlueSignum), 림빅스(Limbix), 웰트(WELT) 등 글로벌 기업과 디지털 치료제 협회(Digital Therapeutics Alliance)의 메간 코더(Megan Coder) 정책부사장이 참여했다. 포럼을 총괄한 채수찬 WBIF 대표는 “반려동물 헬스케어 분야에서 기업과 대학의 최신 동향과 개발 사례 등을 공유한 이번 포럼은 반려동물 헬스케어의 현주소와 미래 전략 등에 대해서도 알아보는 자리로 마련했다”라고 설명했다. 이광형 KAIST 총장은 “WBIF가 각 분야의 전문가들이 자유롭게 의견을 나누는 장이 되어 국내·외 바이오 헬스 산업 발전과 국민 건강 향상을 도모하는 세계적인 바이오 포럼이 되길 바란다”라고 전했다.
2022.12.19
조회수 1110
AI 기반 디지털 바이오 심포지움 개최
우리 대학이 지난 6일 'Al 기반 디지털 바이오 심포지엄'을 대전 본원 KI빌딩 매트릭스홀에서 개최했다. 첨단 바이오 분야는 대한민국의 미래의 먹거리를 창출하는 핵심 기술로 그 중요성이 나날이 커지고 있다. 최근에는 AI와 빅데이터 분석 기술이 발달하며 전통적인 생물학적 기법을 넘어선 데이터 기반 바이오 연구에 대한 관심이 집중되고 있다.현재, 세계 주요 국가 및 기업들은 디지털 바이오 분야의 선도 기술 선점을 위해서 경주하고 있다. 구글 딥마인드는 '알파폴드2'를 활용해 모든 단백질의 3차원 구조를 밝힐 수 있다고 공언하고 있으며, 인공지능 분석을 통한 바이오마커 발굴 및 약물 설계 기술 등은 학계, 벤처, 연구소 등에서 활발하게 연구되고 있다. 우리나라에서도 대통령 주재로 국가과학기술자문회의 전원회의를 개최해 첨단 바이오와 인공지능을 12대 국가전략기술에 포함해 디지털바이오 분야에 대한 연구 투자 확대 등을 계획하고 있다.6일 열린 심포지엄은 국내 AI 및 디지털 바이오 분야의 전문가들을 초청해 관련 연구 분야의 정보를 공유하며, 국내·외 과학기술계의 움직임에 발 빠르게 대처하기 위해 마련됐다. 이상엽 KAIST 연구부총장과 오민규 한국연구재단 차세대바이오 단장이 개회사와 인사말을 전했으며, 예종철 KAIST 디지털 헬스 추진단장이 심포지엄의 개요를 소개했다. 리 우(Li Yu) 홍콩중문대 교수가 기조연설을 맡아 '머신러닝을 이용한 RNA 구조 및 기능 예측'을 주제로 발표했으며, 13명의 국내·외 전문가들이 ▴AI in Cancer Research ▴AI in Omics ▴AI in Protein Design 등 총 세 가지 주제에 관한 첨단 기술들을 소개하고 이에 대한 비전을 제시했다. 심포지엄을 총괄한 예종철 KAIST 디지털 헬스 추진단장은 "인공지능이 IT 분야를 넘어 바이오 분야에서 새로운 발견을 이끌어가는 주요한 수단이 되고 있다"라고 설명했다. 이어, 예 단장은 "이러한 디지털 바이오의 변곡점에서 연구진들에게 새로운 비전을 제시할 수 있는 계기를 마련하기 위해 이번 심포지엄을 개최했다"라고 밝혔다.
2022.12.11
조회수 932
입을 수 있는 OLED로 소아 황달 치료기술 개발
우리 대학 전기및전자공학부 최경철 교수 연구팀이 을지대학교 병원(김승연 교수, 임춘화 교수), 가천대학교(전용민 교수), 선문대학교(권정현 교수)와의 공동 연구를 통해 실제 직물 기반의 웨어러블 청색 OLED를 개발하고, 황달 질환을 앓는 신생아의 혈청에서 청색 OLED 광원에 의한 *빌리루빈 감소로 인한 황달 치료 효과를 확인했다고 22일 밝혔다. ☞ 빌리루빈: 혈액에서 산소를 공급해주는 적혈구가 수명을 다해 분해된 결과물로, 보통 간에 의해 해독되고 담즙으로 배설된다. 혈장 내 빌리루빈의 농도가 올라가면 피부와 눈의 흰자위가 누런색을 띠는 황달 증상이 나타난다. 신생아는 수명이 짧은 적혈구를 갖고 있으나 간 대사가 미숙해 빌리루빈을 많이 생산한다. 최경철 교수 연구실의 최승엽 박사, 가천대학교 의공학과 전용민 교수, 선문대학교 권정현 교수가 공동 제1 저자로 참여한 이번 연구는 첨단 과학기술 분야의 국제 저명 학술지인 `어드밴스드 사이언스(Advanced Science)'에 지난 10월 30일 게재되었고, 속 표지 논문으로 선정됐다. 신생아의 황달 치료는 광선 요법, 약물 투여, 교환 수혈 등 다양한 방법으로 시행된다. 이 중 광선 요법은 체내에 축적된 빌리루빈을 빛에 노출해 변형시켜 체외로 방출하는 안전하고 효과적인 치료 방법이다. 대부분의 신생아 황달은 광선 요법으로 치료할 수 있어 가장 널리 활용되고 있다. 병원에서는 신생아의 혈액 내 빌리루빈 농도가 치료 범위를 초과하면 신생아를 신생아 집중치료실(NICU)에 입원시켜 인큐베이터의 스탠드에 장착된 청색 LED의 빛으로 치료한다. 이 방법은 신생아 황달 증상을 완화하는 데 매우 효과적이지만 신생아를 부모로부터 격리하고 치료하는 동안 모유 수유 중단, 청색광에 의한 망막 손상 방지를 위해 신생아의 눈은 반드시 눈가리개로 완전히 가려야 하는 등의 문제와 더불어 기존에는 LED 기반 설치형 플랫폼이 사용돼 웨어러블 치료 적용에 한계가 있었다. 최경철 교수 연구팀은 황달 치료에 효과적인 470nm(나노미터) 파장의 고출력 고신뢰성의 청색 OLED를 사람이 착용 가능한 직물 위에 구현했으며, 직물과 같은 높은 유연성을 유지하는 옷 OLED 소아 황달 치료 플랫폼을 개발했다. 직물 기반의 청색 OLED는 4V 미만의 저전압에서도 황달치료에 충분한 출력(> 20 μW/cm2/nm)을 확보했을 뿐만 아니라 100시간 이상의 구동 수명, 35℃ 미만의 낮은 구동 온도, 물세탁 신뢰성, 2mm(밀리미터) 수준의 낮은 곡률 반경에서 1,000회 이상을 견디는 유연성 등의 신뢰성을 확보할 수 있었다. 이번 연구에서 470nm 파장을 갖는 청색 OLED를 신생아의 혈청에 조사했을 시, 3시간 이내에 황달 치료가 완료됐다고 판단되는 빌리루빈 수치(12 mg/dL)에 도달했으며, 기존 병원에서 활용되는 LED 황달 상용 치료기기 대비 균일하면서도 효과적인 황달 치료 성능을 연구팀은 확인했다. 공동 제1 저자인 최승엽 박사, 전용민 교수(가천대), 권정현 교수(선문대)는 "이번 연구를 통해 실제 신생아가 착용해 황달 치료가 가능한 성능 및 신뢰성을 갖는 섬유 기반의 청색 OLED 개발에 성공했다ˮ며 "설치형 LED 치료기기의 단점을 보완하며 더욱 균일한 효과를 기대할 수 있는 웨어러블 황달 치료 기술이 상용화될 수 있는 기반을 마련했다ˮ고 말했다. 최경철 교수는 "OLED 분야는 우리나라가 최고 기술을 보유하고 있지만, 중국의 기술 추격이 예사롭지 않은 이 시점에, OLED의 다양한 응용 기술을 개발하는 것이 중국과의 OLED 기술격차를 더 벌릴 수 있고, OLED 응용 중, 직물 위 OLED 기반 웨어러블 의료 기술개발로 바이오 헬스케어 시대에 맞는 OLED 응용의 새로운 시장을 개척해, 우리나라의 OLED 기술이 계속 선두를 유지하기를 바란다ˮ라고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단의 선도연구센터 사업의 지원으로 수행됐다.
2022.11.22
조회수 1872
㈜엔지노믹스, 생명과학과에 발전기금 24억 기부
㈜엔지노믹스(대표 서연수)가 24억 원의 발전기금을 우리 대학에 약정했다. ㈜엔지노믹스는 연구용 효소 개발 및 생산하는 바이오기업으로 2007년 설립됐다. 서연수 KAIST 생명과학과 교수가 최고기술경영자(CTO)를 역임한 뒤 지난해부터 대표를 맡고 있다. 발전재단 관계자는 "㈜엔지노믹스는 2015년부터 올해까지 우수한 박사학위논문을 발표한 학생들을 위한 장학금을 매년 기부해 온 기업"이라고 설명했다. 이어, "이번에는 ㈜엔지노믹스가 생명과학과와 향후 신약 개발을 위한 연구 협력을 추진하고 학과의 부족한 연구 공간을 증축하는 데 보탬이 되기 위해 거액의 발전기금을 쾌척했다"라고 전했다.이번 기부금은 생명과학과 건물 증축(가칭 바이오신약센터)기금으로 전액 사용된다. 2026년 상반기 준공 목표인 바이오신약센터는 교원 연구공간 및 학생 교육 공간 확보, 첨단 연구 장비 및 신약 연구시설 집적화, 행정·기술지원 시설 보강 등을 위해 건립을 추진 중이다. 14일 오전 KAIST 대전 본원 총장실에서 열린 발전기금 약정식에는 서연수 대표, 신용걸 연구소장, 김민정 이사 등 ㈜엔지노믹스 관계자들과 이광형 총장, 이균민 생명과학기술대학장, 이대엽 생명과학과 학과장 등 KAIST 관계자들이 참석했다. 이광형 총장은 "바이오신약센터는 신약 및 치료제 개발 연구로 우리 세대의 생존을 위협하는 다양한 문제를 해결하고 다음 세대에 인류의 난제 해결이라는 더 거대한 꿈을 심어줄 수 있는 교육과 연구의 공간이 될 것"이라고 말했다. 이어, 이 총장은 “차세대 생명과학을 실현하려는 움직임에 ㈜엔지노믹스의 발전기금을 값지고 귀하게 사용할 것"이라며 감사 인사를 전했다. 서연수 ㈜엔지노믹스 대표는 "㈜엔지노믹스는 새로운 신약 및 치료제를 개발해 미래 바이오 및 의료분야 난제를 극복하고 바이오메디컬 시대를 주도하겠다는 비전을 가지고 있다"라고 말했다. 이어, "이런 비전을 KAIST와 함께 이뤄가는 과정에서 생명과학과의 보다 큰 도약을 위한 작은 보탬이 되고자 교수로서의 정년을 앞두고 기부를 결정하게 되었다"라고 기부 소감을 밝혔다. 한편, ㈜엔지노믹스는 국내 최초로 유전자 가위 절단에 필요한 핵심 제한효소를 개발해 생산·판매하는 국내 유일의 기업이다. 지속 가능한 글로벌 단백질 바이오 기업으로 성장하여 최종적으로 치료용 효소 및 단백질 신약 개발을 목표로 하고 있다.
2022.10.14
조회수 1734
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 18