본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%B0%94%EC%9D%B4%EC%98%A4
최신순
조회순
2024 대한민국 혁신창업상에 6개 기업 선정
우리 대학이 한국의 혁신 창업생태계를 한 단계 끌어올린 딥테크 스타트업의 우수 사례를 발굴하는 '2024 대한민국 혁신창업상' 수상기업을 11일 발표했다. '대한민국 혁신창업상'은 혁신적인 기술과 창의적인 아이디어로 무장한 스타트업이 우리나라의 경제를 이끌어갈 미래 성장동력으로 자리매김할 수 있도록 격려하기 위해 마련됐다. 우리 대학과 서울대, 중앙홀딩스가 협력하고 과학기술정보통신부가 후원하며, 시상식은 11일 서울대학교에서 개최된 '혁신창업국가 대한민국 국제심포지엄 2024'에서 진행됐다. 2022년 제정 후 3회차를 맞은 올해는 과학기술정보통신부 장관상을 받는 스탠다드에너지 주식회사와 메티스엑스(주)를 포함해 6개 기업이 수상의 영예를 안았다. 스탠다드에너지는 혁신적인 바나듐 이온 배터리를 개발해 친환경 에너지 산업을 선도하고 있으며 높은 에너지 효율, 배터리 수명, 안전성, 재활용성을 앞세워 세계 시장에서 입지를 넓혀갈 예정이다. 메티스엑스(주)는 CXL 기반의 지능형 메모리를 개발하는 시스템 반도체 스타트업이다. 인공지능 시대의 가장 큰 화두인 데이터 처리 및 분석을 가속해 글로벌 데이터 센터 투자 및 운영 비용을 크게 절감시키는 기술을 제공한다. KAIST 총장상에 선정된 주식회사 고바이오랩은 마이크로바이옴 기반의 혁신적인 바이오 솔루션을 제공하고 있다. 서울대 교원 창업기업으로 새로운 프로바이오틱스 제품 등 지속적인 연구개발을 통해 바이오테크의 새로운 패러다임을 제시하고 있다. 서울대학교 총장상은 페리지에어로스페이스가 받는다. 우리 대학 소속 학생 창업가가 이끄는 기업으로 민간 기업 중에서 최초로 자체 개발한 우주발사체의 국내 시험 비행을 진행하고 있으며, 스웨덴 국영우주기업·필리핀 우주청 등과의 협력을 바탕으로 해외 시장 진출을 위해 노력하고 있다. 중앙홀딩스회장상에는 알지노믹스 주식회사가 선정됐다. RNA 편집 기술을 기반으로 미충족 의학 수요가 높은 희귀 난치질환에 대한 유전자 치료제를 개발해 바이오 기술을 혁신하고 신약 개발의 새로운 지평을 열어가고 있다. 국가과학기술연구회 이사장상을 수상하는 ㈜메디인테크는 의료 영상 분석과 진단 지원 솔루션을 제공해 의료 분야의 디지털 전환을 이끌고 있다. 혁신적인 인공지능 기반 의료 기술로 병원의 진단 효율을 높이며, 첨단 의료 기술 발전에 기여하고 있다. 이날 열린 '혁신창업국가 대한민국 국제심포지엄 2024'에서는 6개 수상기업 및 우리 대학과 서울대 딥테크 창업기업이 다양한 혁신 기술을 소개했다. 또한, ▴글로벌 벤처캐피털(VC)인 SOSV의 모한 아이어(Mohan Iyer) 제너럴 파트너 ▴일본의 테크기업 디지털 개러지(Digital Garage)의 주니치 나카지마(Junichi Nakajima) 디렉터 ▴딥테크 전문 펀드를 운용하는 도쿄대 벤처캐피털(UTEC)의 토모타카 고지 CEO(現 일본벤처캐피탈협회 회장)가 기조 강연지로 나서 딥테크 스타트업 생태계 조성을 위한 조언을 전했다. 이와 함께, ▴백승욱 루닛 설립자 겸 의장 ▴임정민 시그나이트파트너스 투자총괄 ▴정태흠 아델파이벤처스 대표, ▴오준호 레인보우로보틱스 설립자 겸 CTO가 창업 경험과 아이디어를 공유하는 강연이 열렸다. 스타트업 생태계에서 대기업과 CVC의 역할을 논의하는 대담회도 함께 진행됐다.이광형 총장은 "수상기업들은 첨단기술의 상용화를 통해 새로운 시장을 창출하고 기술혁신으로 사회적 가치를 실현한 성과를 높게 평가받았다"라고 설명했다. 이어, 이 총장은 "대한민국 혁신창업상을 통해 창업가 정신을 고취하고 혁신 창업의 중요성을 널리 알리고 기술 창업가들에게 새로운 도전과 영감을 불어넣어 딥테크 창업생태계의 조성과 확산을 촉진하는 계기가 되길 바란다"라고 강조했다.
2024.09.11
조회수 960
제2차 국제 인류세 심포지엄 개최
과학계에서는 지구 온난화와 같은 기후 변화 등 인류 활동으로 초래되어 오래도록 흔적을 남기는 지구 환경의 변동을 지칭하기 위해 ‘인류세’라는 지질시대 용어를 제안한 바 있다. 우리 대학은 국제 연구단체인 '인류세실무단'의 유일한 한국인 위원인 박범순 과학기술정책대학원 교수를 주축으로 '제2차 국제 인류세 심포지엄'을 개최하고 2일 오후 대전 본원에서 개막식열었다. '인류세를 투사하기: 다학문적 접근'을 주제로 열리는 이번 심포지엄에서는 개막식 당일을 포함해 3일간 인류세에 관한 토론과 미디어 아트 특별전이 이어진다. 산업 발전 이후 인간의 활동은 지구 시스템을 유례없이 빠른 속도와 거대한 규모로 변화시키고 있지만, 우리 사회의 발전상은 이를 감당하기엔 모자란 실정이다. 우리 대학은 인류세의 개념을 통해 이러한 변화를 감지하는 과학적 방법을 탐구하고, 인간뿐 아니라 비인간 존재와도 함께 살아가는 방식을 논의하기 위해 이번 심포지엄을 준비했다. 개막식에서는 인류세 연구의 국제적 석학들의 기조 강연이 이어진다. 박범순 인류세연구센터장은 학문 간의 경계를 넘나드는 것이 인류세 연구에 필수적인 이유와 이를 위해 필요한 방법론을 논의한다. 마틴 헤드(Martin J. Head) 캐나다 브록대학교 교수는 인류세의 시작점을 20세기 중반으로 설정하는 데 핵심적인 역할을 한 '대가속(Great Acceleration)'의 개념을 다시 짚어본다. 또한, 인류세 개념을 공식적인 지질연대표에 넣자는 과학자들의 제안을 지질학계가 기각했던 최근 이슈에 관해서도 설명할 예정이다. 위르겐 렌(Jürgen Renn) 독일 막스플랑크 지구인류학 연구소장은 인류세 개념에 대한 과학계의 결정이 인류의 자기 성찰 및 지구 시스템에 대한 책임의 문제와 어떻게 연관되는지를 논의한다. 개막식 후에는 심포지엄의 주제인 인류세를 투사하기(Projecting the Anthropocene)'를 미디어 아트로 만나는 특별전이 개최된다. 강이연 산업디자인학과 교수팀이 제작한 두 개의 영상 작품이 KAIST 본관 벽면에 투사되어, 인류세의 모습과 인류가 지구에 가하는 행위를 강렬하고 역동적으로 선보인다. 건물을 스크린 삼아 상영되는 영상은 배경음악과 어우러져 인류세가 촉발한 난제들을 이해하고, 이를 해결하기 위해서는 연구와 정책뿐만 아니라 예술적이고 창의적인 힘이 중요하다는 메시지를 담아 제작됐다. 심포지엄 둘째 날에는 지구과학, 생물학, 전기공학, 모빌리티 연구, 인문학, 사회과학, 산업디자인, 뉴미디어 아트 등 다양한 분야의 전문가들이 참여하는 발표 세션이 진행된다. 이를 통해 인류세를 감지하고, 그 안에서 살아가기 위한 기술적이고 사회적인 해법들을 함께 모색할 것이다. 마지막 날 열리는 비공개 워크샵에서는 예술 분야와 기술 분야의 창의적 협업 방안도 논의될 예정이다. 이번 국제 심포지엄을 총괄한 박범순 인류세연구센터장은 "인류세를 새로운 지질시대로 공인하자는 제안은 기각되었지만, 학계에서는 이 개념이 앞으로 여러 학문 분야와 예술 활동, 정책개발에 중요하게 사용될 것으로 전망한다"라고 강조했다. 이어, "지금은 인류세 연구가 새로운 단계로 진입한 시점이며, KAIST는 앞으로도 활발한 국제협력을 통해 인류세 개념을 더욱 정밀하게 정의하고 활용 가치를 높이기 위한 연구를 주도할 것"이라고 포부를 밝혔다. '제2차 국제 인류세 심포지엄'은 모든 강연을 영어로 진행하며, 인류세에 관심 있는 사람이라면 누구나 현장에 방문해 청강할 수 있다. 심포지엄 세부 일정 및 인류세연구센터에 대한 자세한 내용은 인류세연구센터 홈페이지(https://anthropocenestudies.com/)에서 확인할 수 있다 우리 대학 인류세연구센터는 한국연구재단의 선도연구센터사업 융합부문에 선정되어 2018년 설립되었으며, 인류세의 개념을 확산하고 관련 연구를 주도적으로 이끌어가고 있다.
2024.09.03
조회수 771
융복합연구센터 이채석 책임연구원, 대전시장 유공표창 수상
공과대학 융복합연구센터(센터장 이재우) 지능융합팀 이채석 책임연구원이 5일 대전광역시 바이오 혁신신약 특화단지 선정에 기여한 공로를 인정받아 유공표창인 '대전광역시장상'을 받았다. 지능융합팀 팀장이자 대전시-KAIST 전략사업연구센터에 겸직 중인 이채석 책임연구원은 2024년 산업통상자원부의 '대전광역시 바이오 혁신신약 특화단지 선정'을 위한 워킹그룹에 참여해 특화단지 선정을 위한 전략을 수립하고 육성계획서 및 발표 자료 제작 실무와 바이오 신약 연구자 간 네트워킹 등의 업무를 수행했다. 특히, 우리 대학 바이오 신약 연구자 네트워킹 구축과 기술 기획에 주력해 대전광역시가 신약 개발의 최적지로 평가받을 수 있는 전략을 수립하고 혁신신약 창출 및 4대 초격차 기술 기반을 준비한 공로를 높게 평가받았다. 이채석 책임연구원은 "KAIST와 대전광역시, 대전테크노파크가 힘을 합친 원팀이 밤낮을 가리지 않는 추진력을 발휘해 이번 특화단지 유치 성과를 낼 수 있었으며, 대전 바이오 혁신신약 특화단지의 성공적인 추진에 최선을 다하겠다"라며 "앞으로도 KAIST가 기여할 수 있는 지역의 대형 국책 사업과 선도적인 연구를 위해 노력하겠다"라고 말했다. 한편, 대전광역시는 바이오 혁신신약 특화단지 지정으로 생산 유발효과 3조 8,280억 원, 부가가치 유발효과 1조 5,979억 원, 고용 유발효과 27,690명 등의 파급효과가 창출될 것으로 예상하고 있다.우리 대학 공과대학 융복합연구센터는 2023년 설립 이래 인공지능, 공간정보, 디지털트윈, 융합센서, 디지털 헬스케어 등 핵심 연구 분야를 기반으로 사회문제해결을 위한 다학제적 융복합연구를 수행하고 있다. '대전시-KAIST 전략사업 연구센터'를 공동으로 운영하고 있으며, '주소기반 실내내비게이션' 실증을 성공적으로 수행해 전국 확산을 위한 활발한 연구를 진행 중이다.
2024.08.07
조회수 1601
미래를 위한 대체 불가 바이오 제조 전략 제시
2021년 서울국제포럼과 KAIST가 공동 개최한 “글로벌 복합위기와 4차 산업혁명의 대전환기, 탄력성장의 도전과 기회” 포럼에서 KAIST 이상엽 특훈교수는 우리나라가 미래 국가경쟁력을 확보하기 위해서는 대체 불가 기술 (non-fungible technology; NFT)을 확보해야 한다고 처음으로 제시한 바 있다. 기후 변화의 심각성에 연간 약 1.1억 톤의 식품 폐기물을 포함한 다양한 유기 폐기물들, 그리고 이산화탄소도 바이오 제조를 위한 원료로 사용하도록 대체 불가능한 바이오기술(Bio-NFT)로 활용하는 것이 이제 선택이 아닌 필수가 됐다. 우리 대학 생명화학공학과 이상엽 특훈교수가 기술 혁신, 원료 공급 최적화 및 적절한 인프라를 통해 바이오 제조의 확장을 포함한 경쟁력 확보 전략 수립에 대한 논문을 네이처 화학공학지(Nature Chemical Engineering)에 월드뷰(Worldview)에 7월 22일 자로 제시했다고 24일 밝혔다. ※ 논문명 : Fungible and non-fungible technologies in biomanufacturing scale-up ※ 저자 정보 : 이상엽(한국과학기술원, 제1 저자, 교신저자) 1명 최근 신진 대사 공학과 합성 생물학의 급성장은 전통적인 화석 자원에 의존하는 제조 공정을 바이오 기반 대안으로 전환할 수 있는 잠재력을 보여주고 있다. 미생물 세포 공장을 통해 화학물질과 재료를 생산하는 바이오 기반 기술은 빠르게 발전하고 있으며, 이는 각각 5.7조 달러, 9.2조 달러, 22.5조 달러의 시장규모를 가진 화학, 식품 및 소비재 등 다양한 산업 부문에 혁신적인 변화를 가져오고 있다. 이는 2조 달러 규모의 제약시장 보다도 훨씬 크다. 그러나 이러한 바이오 제조로의 전환은 기술적, 경제적, 사회적 장벽으로 인해 어려움을 겪고 있다. 점점 더 많은 사람들이 지구 온난화의 현실과 그 악화되는 영향을 인식하면서 환경에 덜 해로운 제품에 대한 선호도가 높아지고 있지만, 실제 구매 결정에 있어서는 가격이 중요한 역할을 한다. 따라서, 각국 정부들은 규제 지원뿐만 아니라 대중과의 소통을 통해 지속 가능한 생산과 소비에 대한 이해와 헌신을 촉진해야 한다. 이 교수는 중요하게 떠오른 바이오 제조 확장, 특히 범용화학물질 생산 등 대체 불가능하지 않은 바이오기술 (not non-fungible)을 위해 풀어야 할 세 가지 주요 과제를 제시했다. 첫째, 미생물 세포 공장의 TRY(titer, rate, yield; 농도, 속도 및 수율)를 최대화하는 것으로 기존 대사공학에 데이터 과학, 인공지능 및 로봇 공학의 통합을 통해 이러한 역량을 강화해야 한다. 둘째, 원료 공급 및 물류의 최적화가 필요하다. 약 6억 톤의 바이오매스가 연간 바이오 기반 재료 생산을 위해 사용될 수 있지만, 최적의 분배 및 공급망이 완전히 구축되지 않았다. 다양한 원료의 사용을 가능하게 하는 기술 개발이 필요하다. 셋째, 인프라 및 시설 건설에 필요한 대규모 자본 투자 문제이다. 최근 들어 건설비용이 급격히 증가하여 최첨단 제조 시설을 구축하는 데 드는 높은 비용은 운영 확장의 재정적 실행 가능성을 어렵게 한다. 바이오 제조시설 구축을 위한 정책자금 투입 등 국가적인 인프라 개념에서의 투자가 요구되며, 단기적인 해결책으로는 완전히 유연한 중형 바이오 정제소를 건설하여 시장에 가장 적합한 제품을 생산할 수 있다고 제시했다. 이 교수는 “기술 혁신, 원료 공급 및 인프라 개발에의 집중적인 노력이 필요하다”고 강조하면서 “이를 통해 산업은 보다 지속 가능하고 경제적으로 실행 가능한 바이오 제조 공정으로 전환할 수 있으며, 이는 글로벌 시장에 큰 영향을 미칠 것이다. 지속 가능한 미래에 기여하고 산업에 상당한 경제적 기회를 제공할 것으로 기대된다.”고 밝혔다. 한편 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제책임자 KAIST 이상엽 특훈교수)의 지원을 받아 수행됐다.
2024.07.25
조회수 1782
종양모델 칩으로 다조건 항암제 동시 평가
실제 인체에 항암제가 투여되면 약물 분자는 혈류를 따라 수송된다. 이 약물 분자들은 혈관 벽을 투과하고 확산한다. 확산한 분자는 종양 덩어리 내부까지 점차 침투해 약물 효능이 나타나게 된다. 우리 연구진이 바이오프린팅 기술로 36가지의 종양 미세환경을 유체채널 내부에 모사하여 12가지 실험 조건에 따른 항암제 효능을 동시에 평가하는데 성공하여 화제다. 우리 대학 바이오및뇌공학과 박제균 교수 연구팀이 기존 바이오프린팅* 및 랩온어칩** 기술의 한계점을 극복하고 장점을 극대화하여 복잡한 종양 미세환경이 구현된 랩온어칩을 개발하여 여러 분석 변수가 반영된 약물 스크리닝을 수행하는 데 성공했다고 16일 밝혔다. * 바이오프린팅(bioprinting): 세포와 생체재료로 구성된 바이오 잉크를 활용하여 생체조직 및 기관과 유사한 기능적 구조물을 제작하는 3D 프린팅 기술 ** 랩온어칩(lab-on-a-chip): “칩 위의 실험실”이란 개념을 갖고 있으며 각종 시료분석에 필요한 전처리, 분리, 희석, 혼합, 반응, 검출 기능 등을 미세유체 회로로 이루어진 채널 내에서 일괄적으로 수행할 수 있도록 만들어진 미세유체 소자 및 시스템 바이오프린팅은 조직이나 장기의 복잡한 형상과 조성을 체외환경에서 재현할 수 있는 생체모사 기술이지만, 제작된 생체모델의 배양 환경 제어와 분석이 어렵다. 반면, 랩온어칩은 미세 유체채널 내에서의 유체 제어 기술에 기반해 배양 환경의 정교한 제어와 다양한 분석 수행이 가능하지만, 미세한 유체 통로 내부에 생체 환경을 모사하는 데 한계가 있었다. 연구진은 바이오프린팅 기술로 서로 다른 조성으로 구성된 총 36개의 종양 모델을 랩온어칩 내에 형성한 후, 동일한 소자 내에서 12가지 실험 조건에 따른 항암제 효능을 동시에 평가하는 데 성공했다. 연구팀은 바이오프린팅의 우수한 공간적 자유도와 다양한 생체재료를 활용할 수 있다는 장점을 이용해, 세 가지 서로 다른 조성으로 이루어진 36개의 종양 모델을 하나의 미세 유체소자에 집적시켰다. 세포를 유동 배양해 물질 수송에 핵심 구조물인 혈관 벽과 종양 덩어리를 모사하여 네 가지 농도의 항암제를 종양 모델에 유입함으로써, 하나의 소자에서 12가지 실험 조건의 약물 평가를 수행했다. 또한 연구팀은 혈관 벽에 의해 약물 분자의 수송이 저해되고 종양 덩어리 내부까지 침투되는 현상을 관찰할 수 있었고, 체내 수송 과정을 모사하지 못했던 기존 종양 모델과 약물 효능에 큰 차이를 보인다는 것을 확인했다. 이처럼 바이오프린팅-랩온어칩 통합기술을 활용해 모델 복잡성, 모델 수, 모델 처리량 등 다양한 변수를 고려한 체외 종양 모델을 제작할 수 있었고, 더욱 신뢰성 있는 약물 평가를 수행할 수 있었다. 연구를 주도한 박제균 교수는 “바이오프린팅과 랩온어칩의 통합기술로 제작된 미세 유체 세포배양 및 분석 플랫폼의 개발에 따른 신뢰성 있는 약물 평가 모델에 대한 성과”임을 강조하며, “향후 다양한 조직 및 장기 특성을 모사하고 생물학적 분석과 약물 효능 평가를 고효율로 수행할 수 있는 동물실험 대체용 차세대 체외 세포배양 및 분석 기술로 활용될 수 있을 것”이라고 말했다. 바이오및뇌공학과 이기현 박사가 제1 저자로 참여한 이번 연구 결과는 국제 학술지 '어드밴스드 헬스케어 머티리얼즈(Advanced Healthcare Materials)'에 2024년 6월 3일 자로 온라인판에 게재됐다. (https://doi.org/10.1002/adhm.202303716. 논문명: Bioprinted multi-composition array mimicking tumor microenvironment to evaluate drug efficacy with multivariable analysis). 또한, 이번 논문은 와일리-VCH(Wiley-VCH) 출판사의 ‘핫 토픽: 종양과 암(Hot Topic: Tumors and Cancer)’세션과 ‘핫 토픽: 미세유체공학(Hot Topic: Microfluidics)’세션에 동시 선정됐다. 한편 이번 연구는 한국연구재단 기초연구사업(중견연구)의 지원을 받아 수행됐다.
2024.07.16
조회수 1705
미생물로 계란을 만든다고?
우리 연구진이 미생물로 계란의 대체제를 개발하는 논문을 발표해서 화제다. 비동물성 원료를 활용한 계란 대체제 개발을 통해 온실가스 배출 및 폐기물 문제 등을 가져오는 공장식 축산의 문제를 해결하고 손쉽게 단백질 섭취가 가능한 지속가능한 식량 체계 구축에 기여할 수 있을 것으로 기대한다. 우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘미생물 유래 친환경 액상 계란 대체물 개발’논문을 발표했다고 4일 밝혔다. 연구진은 미생물 용해물의 가열을 통해 형성된 젤이 삶은 계란과 유사한 미시적 구조와 물리적인 특성을 가지는 것을 확인하였고, 미생물 유래의 식용 효소나 식물성 재료를 첨가하여 다양한 식감을 구현할 수 있음을 밝혔다. 더 나아가, 액체 상태인 용해물을 이용하여 머랭 쿠키를 굽는 등, 미생물 용해물이 난액을 기능적으로 대체할 수 있음을 규명하였다. 현재까지 비동물성 단백질을 기반으로 한 계란 대체제 개발이 진행돼왔으나, 계란의 온전한 영양을 제공하는 동시에 젤화, 거품 형성 등 난액(卵液)이 요리 재료로서 지니는 중요한 핵심 기능적 특성을 함께 구현하는 대체제는 개발되지 못했다. 이러한 배경에서, 연구진은 단위 건조 질량당 단백질 함량이 육류에 비견될 정도로 많은 미생물 바이오매스를 난액 대체제로 개발하고자 했다. 특히, 인류의 오랜 섭취 경험을 통해 효모, 고초균, 유산균 및 기타 프로바이오틱스 균주 등 다양한 미생물들의 안정성이 검증됐고, 미생물 바이오매스는 생산 시 발생하는 이산화탄소뿐만 아니라 물, 토지 등 요구되는 자원이 적으면서도 고품질의 영양성분을 가지고 있기에, 연구진은 미생물 바이오매스를 대체 난액으로 활용하는 기술을 개발할 수 있다면 지속 가능한 미래 식량자원의 확보에 기여할 수 있을 것으로 기대했다. 하지만 미생물 배양을 통해 회수한 반고체 상태의 미생물 바이오매스를 가열하면 난액과 달리 액상으로 변하는 것이 관찰됐다. 이에 연구진은 계란찜을 만들기 위해선 먼저 계란의 껍데기[난각(卵殼)]를 깨트리고 난액을 모아야 한다는 사실에 착안해 미생물의 세포 구조 중 난각에 상응하는 세포벽과 세포막을 파쇄해 미생물 용해물을 제조했고, 이를 가열할 경우 난액처럼 단백질이 응고돼 젤 형태로 변하는 것을 확인했다. 이상엽 특훈교수는 “영양 측면에서도 우수한 성분들을 갖추고 있어 평소 식량에도 사용될 수 있지만, 특히 미래 장거리 우주여행 식량, 전시 상황 등 긴급 상황 시의 대비를 위한 비상식량 등으로도 활용할 수 있으며, 무엇보다 지속 가능한 식량 체계 확보에 도움이 된다”고 말했다. 이번 논문은 네이처(Nature) 誌가 발행하는 'npj 식품 과학(npj Science of Food)'에 6월 19일자 온라인 게재됐다. ※ 논문명 : Microbial lysates repurposed as liquid egg substitutes ※ 저자 정보 : 최경록(한국과학기술원, 제1 저자), 안다희(한국과학기술원, 제2 저자), 정석영(한국과학기술원, 제3 저자), 이유현(한국과학기술원, 제4 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 5명 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제책임자 KAIST 이상엽 특훈교수)와 농촌진흥청이 지원하는 농업미생물사업단(단장 장판식 교수)의 ‘미생물 대사시스템 제어를 통한 무기물로부터의 단백질 생산 기술 개발’ 과제 (과제책임자 KAIST 최경록 연구교수) 및 의 지원을 받아 수행됐다.
2024.07.04
조회수 2184
KAIST 바이오 헬스케어 국제 심포지엄 개최
우리 대학은 사노피·노바티스 등 글로벌 제약회사가 참여하는 ‘KAIST 바이오 헬스케어 국제 심포지엄’을 13일 서울 코엑스에서 개최한다. 우리 대학 창업원(원장 배현민)이 바이오·헬스케어 창업 기업을 지원하기 위해 마련한 자리로 투자유치, 글로벌 사업협력, 네트워크 확장 등을 위한 기회를 제공한다.특히, 글로벌 빅파머의 기조연설과 머크사의 기업 주도형 벤처캐피탈(CVC)인 M벤처스에서 투자 관련 특별강연을 진행한다. 브라이언 브롱크(Brian Bronk) 사노피 글로벌 사업개발 책임자는 ‘환자에게 혁신을 제공하기 위한 사노피의 제품, 연구단계 프로젝트, 파트너십’을 주제로 연설한다. 이어, 도미닉 에리스만(Dominic Ehrismann) 노바티스 면역 부문 연구 책임자가 ‘글로벌 제약회사 노바티스의 신약 탐색 전략 및 프로세스’를 주제로 세계 시장의 신약 개발 동향을 공유한다. 올리버 하딕(Oliver Hardick) M벤처스 사내창업가는 ‘벤처캐피털이 지원하는 스타트업이 가치를 구축하고 극대화하기 위한 주요 조건’을 주제로 특별 강연한다. 해외연사들은 이어지는 패널 토론에도 참여해 바이오·헬스케어 스타트업의 글로벌 투자유치를 위한 전략과 기업가치 상승 방안을 논의할 예정이다.또한, ▴뉴로토브 ▴스파이더코어 ▴큐피크바이오 ▴㈜큐롬바이오사이언스 ▴위버케어 ▴파로노스바이오사이언스 ▴히츠 등 총 7개 바이오·헬스케어 스타트업이 기업설명회(IR Pitching)를 개최한다.이와 함께, 실질적인 투자 협의와 글로벌 사업 협력의 계기를 마련하기 위해 바이오·헬스케어 스타트업과 국내·외 투자자들의 1:1 미팅과 네트워킹 시간도 마련된다. 배현민 창업원장은 “KAIST의 스타트업들이 이번 심포지엄을 계기로 글로벌 제약 기업 및 투자사와 협력 방안을 모색하고 기업가치를 높일 수 있는 다양한 통찰을 얻게 되길 바란다“라고 밝혔다.우리 대학 창업원이 주관하고 충북창조경제혁신센터가 후원하는 이번 행사는 KDB산업은행이 주최하는 넥스트라이즈2024와 협력해 진행된다. 또한, 창업원 유튜브 채널에서 13일 오후 1시부터 실시간으로 시청할 수 있다.
2024.06.12
조회수 1683
이상엽 특훈교수, 합성생물학 개척자 상 수상
전 세계적으로 바이오 제조의 핵심기술인 합성생물학 분야 기술개발 경쟁이 치열하다. 우리 대학 생명화학공학과 이상엽 특훈교수가 합성생물학 분야 연구자, 기업인, 투자자 등이 대거 참여하는 세계 최대의 콘퍼런스인 ‘신바이오베타(SynBioBeta) 2024’에서 세계 합성생물학 개척자 상인 ‘신바이오베타 파이오니어 상(SynBioBeta Pioneer Award)’을 수상했다고 31일 밝혔다. 5월 6일부터 9일까지 미국 산호세 컨벤션센터에서 개최된 신바이오베타 2024는 순수한 학술대회와는 다르게 학계와 연구계 연구자들뿐 아니라 수많은 합성생물학 기업과 투자자들이 모여 기조 강연, 패널토론, 전시, 투자 네트워킹 등 다양한 형태의 방식으로 진행됐다. 인간 게놈서열을 처음으로 밝힌 크래그 벤터 박사, 바이오 투자계의 전설인 비노드 코슬라, 노벨상 수상자인 토마스 쉬도프 교수, 조인트 바이오에너지연구소의 제이 키슬링 CEO 등 600여 명의 참석자들이 활발한 토론을 했다. 이상엽 특훈교수는 ‘지속가능과 건강을 위한 합성생물학의 역할’을 주제로 기조 강연을 해 청중들의 큰 박수를 받았고, ‘생물학적 해결 용량 확장’세션에서 패널토론을 통해 세포공장 효율 극대화를 위한 기술적 혁신, 원료 수급의 최적화, 인프라 투자 등의 중요성을 강조했다. 신바이오베타는 전 세계 합성생물학 연구자 중 세 명의 개척자 상 후보자를 먼저 선정해 공개했고, 그중 이상엽 교수가 최종 수상자로 선정됐다. 콘퍼런스 마지막 날 이상엽 특훈교수는 합성생물학이 태동한 후 20여 년간 합성생물학 기반 바이오 제조 원천기술들과 석유 화학물질, 기능성 천연물질 등을 바이오 기반으로 만드는 다수의 기술들을 세계 최초로 개발하는 등 합성생물학 분야 연구를 개척한 공로로 세계 합성생물학 개척자 상을 받게 됐는데, 스탠퍼드 대학교 특강을 하는 중 발표되어 신바이오베타 2024에 참석 중이던 이 교수의 제자가 대리 수상했다. 상을 받게 된 이상엽 특훈교수는 “지난 30여 년간 제자들과 함께 연구해 온 시스템 대사공학이 바이오 제조분야에서 핵심 역할을 하게 될 것임을 합성생물학 전체 커뮤니티에서 인정받아 기쁘다”고 소감을 밝히며, “전 세계적으로 바이오 제조가 점점 더 중요해지는 시점에 인공지능, 바이오파운드리 활용 미생물 세포공장의 원천 및 응용 기술들을 지속 개발해 바이오산업 발전에 기여하고 싶다”고 향후 계획을 밝혔다.
2024.06.03
조회수 1861
KAIST-머크社, 글로벌 바이오산업 선도 위한 업무협약 체결
우리 대학이 글로벌 과학기술 선도기업인 머크 라이프사이언스(대표 마티아스 하인젤, 이하 머크사)와 첨단바이오 분야 혁신과 기술 창출을 위한 업무 협약(MOU)을 29일 체결했다. 지난해 5월부터 다차원적인 혁신 프로그램을 논의해 온 두 기관은 이번 업무협약을 발판 삼아 바이오산업 혁신을 위한 도전과제를 중심으로 산학협력을 수행할 예정이다. 우리 대학은 머크사가 제공한 화학 및 바이오 분야 포트폴리오를 활용해 합성생물학, mRNA, 세포주 엔지니어링, 오가노이드 등 다양한 첨단바이오 분야의 공동연구를 진행한다. 이와 함께, 신소재공학과 및 의과학대학원과의 협력으로 익스피리언스 랩(Experience lab) 설치해 재료과학 및 생물학 분야의 후보물질 발견 및 분석 솔루션을 지원할 예정이다. 연구진 역량 강화를 위한 프로그램도 제공된다. 대학원생을 위한 장학 제도를 시행하고 교수진을 위한 연구 분야 포상도 제정된다. 또한, 머크사가 개최하는 세계적인 학술행사 및 교육 프로그램에 참여할 기회도 주어진다. '큐리어스 2024-퓨처 인사이트 컨퍼런스(Curious 2024 Future Insight Conference)'와 '이노베이션 컵(Innovation Cup)' 등이다. 머크 그룹 산하 벤처 캐피털 회사인 M 벤처스(M Ventures)는 기술사업화 및 스타트업 생태계 구축을 위해 우리 대학 창업원과 협력한다. 29일 우리 대학 대전 본원에서 열리는 협약식에는 마티아스 하인젤(Matthias Heinzel) 머크 라이프사이언스 이사회 멤버 겸 CEO와 이광형 총장 등 두 기관 관계자가 참석한 가운데 진행됐다. 마티아스 하인젤 대표는 "KAIST와 체결한 이번 협약은 한국 및 글로벌 생명과학 산업의 발전을 가속화하는 데 있어 중요한 발걸음이 될 것이다"라며 "생명과학 연구의 수준을 한 단계 발전시키고 차세대 과학자들을 육성하는 과정은 미래에 필요한 신약을 발견해 내는 열쇠로, 머크는 이 과정을 통해 과학으로 인류의 생명과 건강을 증진시키는 데 기여해 나갈 것이다"라고 밝혔다. 이광형 총장은 "선도적인 기술을 가진 글로벌 기업 머크와 과학 분야의 혁신을 창출하고 있는 KAIST가 함께 과학기술 발전을 위한 비전을 공유하고 긴밀한 협력을 하게 되어 기쁘다"라며, "이번 파트너십이 머크의 라이프 사이언스 비즈니스와 글로벌 과학계 간의 연결고리를 강화하는 계기가 되길 기대한다"고 밝혔다.한편, 머크사는 350년이 넘는 역사를 가진 글로벌 과학 기술 기업으로 지난 3월 으리 대학이 위치한 대전 지역에 4,300억 원(3억 유로)을 투입해 바이오프로세싱 센터를 건립할 예정이라고 발표했다. 이는 머크사가 아시아 태평양 지역에서 단행한 최대 규모의 투자로 알려져 있다.
2024.05.29
조회수 1845
KAIST, 대만 포모사그룹과 본격적인 협력 시작하다
우리 대학이 대만의 3대 기업 중 하나인 포모사그룹(Formosa Plastics Group)과 첨단바이오 및 친환경에너지 분야에서 협력을 추진한다. 이를 위해 이달 13일 포모사그룹 상무위원이자, 그룹 내 바이오 및 친환경에너지 분야를 이끄는 샌디 왕(王瑞瑜, Sandy Wang) 회장이 KAIST에 방문한다. 포모사그룹의 오너가 우리 대학을 공식 내방하는 것은 이번이 처음이다. 양 기관의 협력은 지난 3월 우리 대학이 포모사그룹이 설립하고 지원하는 명지과기대(明志科技大學), 장경대학교(長庚大學) 및 장경기념병원(長庚記念醫院) 등과 포괄적인 교류 협력에 관한 업무협약(MOU)를 맺으며 시작됐다. 이를 바탕으로 더욱더 구체적인 교류 협력을 추진하기 위해 우리 대학을 찾는 샌디왕 회장은 보직자를 위한 강의인 '매세월 서연'에서 '부친 왕융칭(王永慶) 회장의 자녀교육과 기업의 사회 환원 및 실천'을 주제로 리더십 특강을 진행한다. 이어, 첨단바이오 및 친환경에너지 등 대만의 미래산업과 관련된 KAIST의 연구와 기술을 참관한 뒤 글로벌 산학협력 방안을 논의한다. 향후 두 기관은 상호 겸임교수를 임명해 학생 공동지도 및 연구 협력 등, 실질적인 글로벌 협력을 추진한다는 계획이다. KAIST 차세대 ESS 연구센터와 배터리 응용 연구를 진행하고 장경대학-장경기념병원과 연계된 줄기세포 및 유전자편집기술 분야 특화 대학원 프로그램을 개설하는 등 실효적인 중장기 협력을 도모할 방침이다. 바이오 및 친환경에너지 관련 KAIST 우수 벤처기업을 대상으로 포모사 그룹의 투자와 협력도 추진해 대만과 한국 간 혁신 산업 협력의 발판을 마련할 예정이다. 이광형 총장은 "포모사 그룹은 세계적인 네트워크를 가지고 있어 KAIST의 바이오 및 공학 기술을 세계로 진출시키는 데 매우 중요한 파트너가 될 것으로 예상한다"라면서, "이번 샌디 왕 회장의 방문으로 세계 경제 대국으로 부상 중인 대만과 긴밀한 협력관계를 이어갈 수 있을 것으로 기대한다"라고 덧붙였다. 포모사 그룹은 샌디 왕 회장의 선친인 왕융칭(王永慶) 회장이 일군 회사다. 플라스틱 PVC 생산 세계 1위 기업으로 반도체, 철강, 중공업, 바이오,배터리에 이르기까지 대만경제의 핵심 산업을 주도하고 있다. 왕융칭 회장은 자신이 일군 기업과 재산은 '국민의 것'이라는 신념 아래 재산을 사회에 환원하는 모범을 보여 대만 국민에게 존경받았다. 우리 대학과 협력을 추진하는 장경대학, 장경기념병원 및 명지과기대 역시 왕융칭 회장이 추진한 사회공헌의 일환으로 설립돼 포모사그룹으로부터 재정을 지원받고 있다.
2024.05.09
조회수 2500
생성형 AI로 혁신적 신약 개발 가능성 열어
최근 자연어나 이미지, 동영상, 음악 등 다양한 분야에서 주목받는 생성형 AI가 신약 설계 분야에서도 기존 신규성 문제를 극복하고 새로운 혁신을 일으키고 있다고 하는데 어떤 기술일까? 우리 대학 화학과 김우연 교수 연구팀이 단백질-분자 사이의 상호작용을 고려해 활성 데이터 없이도 타겟 단백질에 적합한 약물 설계 생성형 AI를 개발했다고 18일 밝혔다. 신규 약물을 발굴하기 위해서는 질병의 원인이 되는 타겟 단백질에 특이적으로 결합하는 분자를 찾는 것이 중요하다. 기존의 약물 설계 생성형 AI는 특정 단백질의 이미 알려진 활성 데이터를 학습에 활용하기 때문에 기존 약물과 유사한 약물을 설계하려는 경향이 있다. 이는 신규성이 중요한 신약 개발 분야에서 치명적인 약점으로 지적되어 왔다. 또한 사업성이 높은 계열 내 최초(First-in-class) 타겟 단백질에 대해서는 실험 데이터가 매우 적거나 전무한데, 이 경우 기존 방식의 생성형 AI를 활용하는 것이 불가능하다. 연구팀은 이런 데이터 의존성 문제를 극복하기 위해 단백질 구조 정보만으로 분자를 설계하는 기술 개발에 주목했다. 타겟 단백질의 약물 결합 부위에 대한 3차원 구조 정보를 주형처럼 활용해 해당 결합 부위에 꼭 맞는 분자를 주조하듯 설계하는 것이다. 마치 자물쇠에 딱 맞는 열쇠를 설계하는 것과 같은 이치다. 또한 기존 단백질 구조 기반 3차원 생성형 AI 모델들은 신규 단백질에 대해 설계한 분자들의 안정성과 결합력이 떨어지는 등 낮은 일반화 성능을 개선하기 위해서 연구팀은 신규 단백질에 대해서도 안정적으로 결합할 수 있는 분자를 설계할 수 있는 기술을 개발하는 데 초점을 뒀다. 연구팀은 설계한 분자가 단백질과 안정적으로 결합하기 위해서는 단백질-분자 간 상호작용 패턴이 핵심 역할을 하는 것에 착안했다. 연구팀은 생성형 AI가 이러한 상호작용 패턴을 학습하고, 분자 설계에 직접 활용할 수 있도록 모델을 설계하고 재현할 수 있도록 학습시켰다. 기존 단백질 구조 기반 생성형 AI 모델들은 부족한 학습 데이터를 보완하기 위해 10만~1,000만 개의 가상 데이터를 활용하는 반면, 이번 연구에서 개발한 모델의 장점은 수천 개의 실제 실험 구조만을 학습해도 월등히 높은 성능을 발휘한다는 것이다. 이는 자연에서 관찰되는 단백질-분자 상호작용 패턴을 사전 지식의 형태로 학습에 활용함으로써 적은 데이터만으로도 일반화 성능을 획기적으로 높인 것에 기인한다. 일례로 아시아인에 주로 발견되는 돌연변이 상피 성장인자 수용체(EGFR-mutant)*는 비소세포폐암의 주요 원인으로 알려져 있는데, 이를 타겟으로 하는 약물을 설계하기 위해서는 야생형(wild-type) 수용체**에 대한 높은 선택성을 고려하는 것이 필수적이다. *상피 성장인자 수용체: 상피 성장인자 수용체:상피 성장인자 수용체는 상피 세포의 성장을 촉진하는 인자에 결합함으로써 활성화되는 막 단백질로, 이 수용체의 돌연변이로 인한 지나친 활성은 다양한 종양의 발생과 관련이 있다고 알려져 있음 **야생형 수형체: 야생형은 자연 상태에서 가장 흔하게 발견되는 유전자형 또는 표현형으로, 유전자나 생체 분자 등의 변이가 없는 정상적인 상태를 말함 연구진은 생성형 AI를 통해 돌연변이가 일어난 아미노산에 특이적인 상호작용을 유도해 분자를 설계했고, 그 결과 생성된 분자의 23%가 이론상으로 100배 이상의 선택성을 가지는 것으로 예측됐다. 이와 같은 상호작용 패턴에 기반한 생성형 AI는 인산화효소 저해제(kinase inhibitor)* 등과 같이 약물 설계에 있어 선택성이 중요한 상황에서 더욱 효과적으로 활용될 수 있다. *인산화효소 저해제: 단백질의 인산화를 촉진하는 효소로, 일반적으로 아데노신 삼인산(ATP)으로부터 인산기를 단백질의 특정 잔기에 전달함. 인산화효소는 세포 내 신호전달 네트워크의 핵심 조절자로서, 다양한 질병의 기전에 관여하여 약물 개발의 표적으로 여겨지고 있음. 이를 위해 인산화효소에 결합하여 활성을 억제하는 목적을 가지는 분자를 인산화효소 저해제라 함 제1 저자로 참여한 화학과 정원호 박사과정 학생은 “사전 지식을 인공지능 모델에 사용하는 전략은 상대적으로 데이터가 적은 과학 분야에서 적극적으로 사용되어 왔다”며 “이번 연구에서 사용한 분자 간 상호작용 정보는 약물 분자뿐 아니라 다양한 생체 분자를 다루는 바이오 분야의 문제에도 유용하게 적용될 수 있을 것”이라고 말했다. 한국연구재단의 지원을 받아 수행된 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications) (IF=16.6)’ 2024년 3월 15호에 게재됐다. (논문명: 3D molecular generative framework for interaction-guided drug design, 논문 링크: https://www.nature.com/articles/s41467-024-47011-2)
2024.04.18
조회수 3644
미래 식량인 미생물 식품 생산 전략 밝혀
가파른 인구 증가와 기후 변화로 인한 식량 생산성 저하로 인해 전 세계 식량 위기가 고조되고 있다. 더욱이 오늘날의 식량 생산 및 공급 시스템은 인류가 배출하는 총량의 30%에 달할 정도로 막대한 양의 이산화탄소를 배출하며 기후 변화를 가중시키고 있다. 이러한 난국을 타개할 열쇠로서 지속 가능하면서도 영양이 풍부한 미생물 식품이 주목받고 있다. 우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘지속 가능한 원료로부터의 미생물 식품 생산’연구의 방향을 제시하는 논문을 게재했다고 12일 밝혔다. 미생물 식품은 미생물을 이용해 생산되는 각종 식품과 식품 원료를 가리킨다. 미생물의 바이오매스에는 단위 건조 질량당 단백질 함량이 육류에 비견될 정도로 많은 양의 단백질을 함유하고 있으며, 각종 가축이나 어패류, 농작물과 비교해 단위 질량을 생산하는 데 가장 적은 양의 이산화탄소를 배출하고, 필요로 하는 물의 양과 토지 면적 또한 적기 때문에 친환경적이고 지속 가능한 고영양 식량자원이 될 수 있다. 우리 주변에서 가장 쉽게 접할 수 있는 미생물 식품으로는 발효식품을 꼽을 수 있다. 비록 발효식품 내 미생물 바이오매스가 차지하는 비중은 적지만 발효 과정 중 탄수화물과 같이 비교적 영양학적 가치가 낮은 화합물을 소비하며 미생물이 증식함에 따라 단백질이나 비타민 등과 같이 보다 높은 영양학적 가치를 지니는 영양소의 함량이 증진된다. 미생물 배양을 통해 얻은 바이오매스나 배양액으로부터 분리·정제한 각종 식품 화합물 또한 미생물 식품의 한 갈래다. 주변에서 찾아볼 수 있는 예로는 글루탐산나트륨을 비롯한 각종 아미노산과 식품용 단백질·효소, 풍미 화합물, 색소, 생리활성 물질 등이 있다. 마지막으로, 가장 궁극적이며 근본적인 형태의 미생물 식품은 미생물 배양을 통해 생산된 미생물 바이오매스나 추출물 및 이를 이용해 조리한 식품이라고 할 수 있다. 미생물의 바이오매스나 이로부터 추출한 미생물 단백질을 총칭하는 단세포단백질이 대표적인 예라 할 수 있다. 연구진은 이번 논문을 통해 미생물 식품을 보다 지속 가능한 방식으로 생산하는 데 사용할 수 있는 각종 비식용 원료와 이들의 활용 전략을 총망라했다. 더 나아가 해당 원료를 활용해 산업에서 실제로 생산되고 있는 각종 미생물 식품 및 이들의 특징과 함께 지속 가능한 미생물 식품의 생산 및 대중화에 대한 전망 등을 다뤘다. 이번 논문의 제1 저자인 최경록 연구교수는 “여러 지속 가능한 원료로부터 생산된 미생물 식품은 머지않아 우리 식탁에서 흔하게 접하게 될 것”이라고 말했다. 제2 저자인 정석영 박사과정생 역시 “미래의 미생물 식품은 환경에 대한 의무감으로만 소비되는 제한적인 식품이 아닌, 영양과 맛까지 갖춰 소비자들의 선택을 받는 완전식품이 될 것”이라고 말했다. 또한 이상엽 특훈교수는 “우리 자신은 물론 후손들을 위한 지속 가능한 사회를 만들어 나가기 위해 보다 다양한 미생물 식품이 개발되고 대중화될 수 있도록 산·학은 물론 민·관이 더욱 긴밀하게 협력해야 할 때”라고 밝혔다. 이번 논문은 네이처(Nature) 誌가 발행하는 ‘네이처 미생물학(Nature Microbiology)’에 4월 9일 자 온라인 게재됐다. ※ 논문명 : From sustainable feedstocks to microbial foods ※ 저자 정보 : 최경록(한국과학기술원, 제1 저자), 정석영(한국과학기술원, 제2 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 3명 한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제책임자 KAIST 이상엽 특훈교수) 및 농촌진흥청이 지원하는 농업미생물사업단(단장 장판식 교수)의 ‘미생물 대사시스템 제어를 통한 무기물로부터의 단백질 생산 기술 개발’ 과제 (과제책임자 KAIST 최경록 연구교수)의 지원을 받아 수행됐다.
2024.04.12
조회수 4005
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 20